(p, q)-Equations with Singular and Concave Convex Nonlinearities

被引:0
|
作者
Nikolaos S. Papageorgiou
Patrick Winkert
机构
[1] National Technical University,Department of Mathematics
[2] Institut für Mathematik,Technische Universität Berlin
来源
关键词
Singular and concave-convex terms; Nonlinear regularity theory; Nonlinear maximum principle; Strong comparison theorems; Minimal positive solution; Primary: 35J20; Secondary: 35J75; 35J92;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear Dirichlet problem driven by the (p, q)-Laplacian with 1<q<p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<p$$\end{document}. The reaction is parametric and exhibits the competing effects of a singular term and of concave and convex nonlinearities. We are looking for positive solutions and prove a bifurcation-type theorem describing in a precise way the set of positive solutions as the parameter varies. Moreover, we show the existence of a minimal positive solution and we study it as a function of the parameter.
引用
下载
收藏
页码:2601 / 2628
页数:27
相关论文
共 50 条