(p, q)-Equations with Singular and Concave Convex Nonlinearities

被引:0
|
作者
Nikolaos S. Papageorgiou
Patrick Winkert
机构
[1] National Technical University,Department of Mathematics
[2] Institut für Mathematik,Technische Universität Berlin
来源
关键词
Singular and concave-convex terms; Nonlinear regularity theory; Nonlinear maximum principle; Strong comparison theorems; Minimal positive solution; Primary: 35J20; Secondary: 35J75; 35J92;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear Dirichlet problem driven by the (p, q)-Laplacian with 1<q<p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<p$$\end{document}. The reaction is parametric and exhibits the competing effects of a singular term and of concave and convex nonlinearities. We are looking for positive solutions and prove a bifurcation-type theorem describing in a precise way the set of positive solutions as the parameter varies. Moreover, we show the existence of a minimal positive solution and we study it as a function of the parameter.
引用
下载
收藏
页码:2601 / 2628
页数:27
相关论文
共 50 条
  • [1] (p, q)-Equations with Singular and Concave Convex Nonlinearities
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 2601 - 2628
  • [2] SINGULAR EQUATIONS WITH VARIABLE EXPONENTS AND CONCAVE-CONVEX NONLINEARITIES
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (06): : 1414 - 1434
  • [3] Schrodinger equations with concave and convex nonlinearities
    Liu, ZL
    Wang, ZQ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (04): : 609 - 629
  • [4] A MULTIPLICITY RESULTS TO A p - q LAPLACIAN SYSTEM WITH A CONCAVE AND SINGULAR NONLINEARITIES
    Choudhuri, Debajyoti
    Kratou, Mouna
    Saoudi, Kamel
    FIXED POINT THEORY, 2023, 24 (01): : 127 - 154
  • [5] Quasilinear Schrodinger equations with concave and convex nonlinearities
    Liu, Shibo
    Yin, Li-Feng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (03)
  • [6] Schrödinger equations with concave and convex nonlinearities
    Zhaoli Liu
    Zhi-Qiang Wang
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 56 : 609 - 629
  • [7] A MULTIPLICITY RESULTS TO A p-q LAPLACIAN SYSTEM WITH A CONCAVE AND SINGULAR NONLINEARITIES
    Choudhuri, Debajyoti
    Kratou, Mouna
    Saoudi, Kamel
    FIXED POINT THEORY, 2023, 24 (02): : 541 - 568
  • [8] On semilinear elliptic equations involving concave and convex nonlinearities
    Chabrowski, J
    Bezzera, JM
    MATHEMATISCHE NACHRICHTEN, 2002, 233 : 55 - 76
  • [9] On semilinear elliptic equations with concave and convex nonlinearities in RN
    Yang, HT
    Chen, ZC
    ACTA MATHEMATICA SCIENTIA, 2000, 20 (02) : 181 - 188
  • [10] Quasilinear Schrödinger equations with concave and convex nonlinearities
    Shibo Liu
    Li-Feng Yin
    Calculus of Variations and Partial Differential Equations, 2023, 62