Extension of Saturation Theorems for the Sampling Kantorovich Operators

被引:0
|
作者
Benedetta Bartoccini
Danilo Costarelli
Gianluca Vinti
机构
[1] University of Perugia,Department of Mathematics and Computer Science
来源
关键词
Inverse results; Sampling Kantorovich series; Order of approximation; Generalized sampling operators; Saturation order; 41A25; 41A05; 41A30; 47A58;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we extend the saturation results for the sampling Kantorovich operators proved in a previous paper, to more general settings. In particular, exploiting certain Voronovskaja-formulas for the well-known generalized sampling series, we are able to extend a previous result from the space of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}-functions to the space of C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-functions. Further, requiring an additional assumption, we are able to reach a saturation result even in the space of the uniformly continuous and bounded functions. In both the above cases, the assumptions required on the kernels, which define the sampling Kantorovich operators, have been weakened with respect to those assumed previously. On this respect, some examples have been discussed at the end of the paper.
引用
收藏
页码:1161 / 1175
页数:14
相关论文
共 50 条
  • [21] The extension theorems of cone linear operators
    Sheng, BH
    Liu, SY
    Mao, H
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2002, 23 (01) : 71 - 78
  • [22] The extension theorems of cone linear operators
    Sheng Bao-huai
    Liu San-yang
    Mao Hua
    Applied Mathematics and Mechanics, 2002, 23 (1) : 71 - 78
  • [23] THE EXTENSION THEOREMS OF CONE LINEAR OPERATORS
    盛宝怀
    刘三阳
    毛华
    Applied Mathematics and Mechanics(English Edition), 2002, (01) : 71 - 78
  • [24] Inverse results of approximation and the saturation order for the sampling Kantorovich series
    Costarelli, Danilo
    Vinti, Gianluca
    JOURNAL OF APPROXIMATION THEORY, 2019, 242 : 64 - 82
  • [25] On approximation properties of Balazs-Szabados operators and their Kantorovich extension
    Agratini, Octavian
    Korean Journal of Computational and Applied Mathematics, 2002, 9 (02): : 361 - 372
  • [26] Multidimensional sampling-Kantorovich operators in BV-spaces
    Angeloni, Laura
    Vinti, Gianluca
    OPEN MATHEMATICS, 2023, 21 (01):
  • [27] On Approximation Properties of Generalized Kantorovich-type Sampling Operators
    Orlova, Olga
    Tamberg, Gert
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 53 - 57
  • [28] On approximation properties of generalized Kantorovich-type sampling operators
    Orlova, Olga
    Tamberg, Gert
    JOURNAL OF APPROXIMATION THEORY, 2016, 201 : 73 - 86
  • [29] Convergence Results for Nonlinear Sampling Kantorovich Operators in Modular Spaces
    Costarelli, Danilo
    Natale, Mariarosaria
    Vinti, Gianluca
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2023, 44 (12) : 1276 - 1299
  • [30] Multivariate sampling Kantorovich operators: quantitative estimates in Orlicz spaces
    Angeloni, Laura
    Cetin, Nursel
    Costarelli, Danilo
    Sambucini, Anna rita
    Vinti, Gianluca
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2021, 4 (02): : 229 - 241