Extension of Saturation Theorems for the Sampling Kantorovich Operators

被引:0
|
作者
Benedetta Bartoccini
Danilo Costarelli
Gianluca Vinti
机构
[1] University of Perugia,Department of Mathematics and Computer Science
来源
关键词
Inverse results; Sampling Kantorovich series; Order of approximation; Generalized sampling operators; Saturation order; 41A25; 41A05; 41A30; 47A58;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we extend the saturation results for the sampling Kantorovich operators proved in a previous paper, to more general settings. In particular, exploiting certain Voronovskaja-formulas for the well-known generalized sampling series, we are able to extend a previous result from the space of C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}-functions to the space of C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-functions. Further, requiring an additional assumption, we are able to reach a saturation result even in the space of the uniformly continuous and bounded functions. In both the above cases, the assumptions required on the kernels, which define the sampling Kantorovich operators, have been weakened with respect to those assumed previously. On this respect, some examples have been discussed at the end of the paper.
引用
收藏
页码:1161 / 1175
页数:14
相关论文
共 50 条
  • [1] Extension of Saturation Theorems for the Sampling Kantorovich Operators
    Bartoccini, Benedetta
    Costarelli, Danilo
    Vinti, Gianluca
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) : 1161 - 1175
  • [2] Converse theorems for multidimensional Kantorovich operators
    Zhou, Ding-Xuan
    Analysis Mathematica, 1993, 19 (01)
  • [3] ORDER OF APPROXIMATION FOR SAMPLING KANTOROVICH OPERATORS
    Costarelli, Danilo
    Vinti, Gianluca
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2014, 26 (03) : 345 - 368
  • [4] On Approximation by Kantorovich Exponential Sampling Operators
    Bajpeyi, Shivam
    Kumar, A. Sathish
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (09) : 1096 - 1113
  • [5] The Voronovskaja type theorem for an extension of Kantorovich operators
    Miclaus, Dan
    Pop, Ovidiu T.
    Barbosu, Dan
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (04): : 29 - 36
  • [6] Approximation Theorems for Complex α-Bernstein-Kantorovich Operators
    Kara, M.
    Mahmudov, N. I.
    RESULTS IN MATHEMATICS, 2024, 79 (02)
  • [7] Approximation Theorems for Complex Szasz-Kantorovich Operators
    Mahmudov, N. I.
    Kara, M.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (01) : 32 - 38
  • [8] CONVERGENCE THEOREMS IN ORLICZ AND BOGEL CONTINUOUS FUNCTIONS SPACES BY MEANS OF KANTOROVICH DISCRETE TYPE SAMPLING OPERATORS
    Ayan, Serkan
    Ispir, Nurhayat
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023, 6 (03): : 354 - 368
  • [9] Approximation Theorems for q-Bernstein-Kantorovich Operators
    Mahmudov, N. I.
    Sabancigil, P.
    FILOMAT, 2013, 27 (04) : 721 - 730
  • [10] Quantitative Estimates for Nonlinear Sampling Kantorovich Operators
    Nursel Çetin
    Danilo Costarelli
    Gianluca Vinti
    Results in Mathematics, 2021, 76