Properties of the Discrete Hilbert Transform

被引:0
|
作者
Rashid A. Aliev
Aynur F. Amrahova
机构
[1] Baku State University,Institute of Mathematics and Mechanics
[2] NAS of Azerbaijan,undefined
[3] Khazar University,undefined
来源
关键词
Discrete Hilbert transform; Asymptotic behavior of the distribution function; Q-integral; Q-summability; 44A15; 26A39; 40G99;
D O I
暂无
中图分类号
学科分类号
摘要
The asymptotic behavior of the distribution function of the Hilbert transform of sequences from the class l1 is studied. The concept of Q-summability of series is introduced; using this notion, it is shown that the Hilbert transform of a sequence from the class l1 is Q-summable and is Q-sum is zero.
引用
收藏
页码:3883 / 3897
页数:14
相关论文
共 50 条
  • [21] On robust estimation of discrete hilbert transform of noisy data
    [J]. Roy, Indrajit G., 1600, Society of Exploration Geophysicists (78):
  • [22] Noise properties of Hilbert transform evaluation
    Pavlicek, Pavel
    Svak, Vojtech
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2015, 26 (08)
  • [23] Some properties of a modified Hilbert transform
    Ferrari, Matteo
    [J]. COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [24] LINEAR CANONICAL HILBERT TRANSFORM AND PROPERTIES
    Bahri, Mawardi
    Amir, Amir Kamal
    Ashino, Ryuichi
    [J]. PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2019, : 104 - 109
  • [25] SOME USEFUL PROPERTIES OF THE HILBERT TRANSFORM
    GLASSER, ML
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (06) : 1228 - 1230
  • [26] On the numerical implementation of discrete finite Hilbert transform for image reconstruction
    Yang, Yi
    Tang, Shaojie
    Tang, Xiangyang
    [J]. MEDICAL IMAGING 2012: PHYSICS OF MEDICAL IMAGING, 2012, 8313
  • [27] A one-dimensional discrete Hilbert transform for interferometric phases
    Onodera, R
    Ishii, Y
    [J]. ADVANCED MATERIALS AND DEVICES FOR SENSING AND IMAGING II, 2005, 5633 : 256 - 264
  • [28] A Reconfigurable High Speed Architecture Design for Discrete Hilbert Transform
    Reddy, P. Sreenivasa
    Mopuri, Suresh
    Acharyya, Amit
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (11) : 1413 - 1417
  • [29] Limits of calculating the finite Hilbert transform from discrete samples
    Boche, Holger
    Pohl, Volker
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, 46 (01) : 66 - 93
  • [30] A Method to Detect Causality Violations Using Discrete Hilbert Transform
    Becerra, Juan
    Vega, Felix
    Rachidi, Farhad
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY & SIGNAL/POWER INTEGRITY (EMCSI), 2017, : 388 - 392