Graded Antisimple Primitive Radical

被引:0
|
作者
Jun Chao Wei
Li Bin Li
机构
[1] Yangzhou University,Department of Mathematics, College of Science
来源
Acta Mathematica Sinica | 2002年 / 18卷
关键词
Graded antisimple primitive radical; Graded subdirectly irreducible graded primitive ring; Graded supplementing radical; 16D20;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the graded version of the antisimple primitive radical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{S}\mathcal{J}}} $$\end{document}, the graded antisimple primitive radical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{S}\mathcal{J}}}_{G} $$\end{document}. We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{S}\mathcal{J}}}_{G} = {\user1{\mathcal{S}\mathcal{J}}}_{{{\text{ref}}}} = {\user1{\mathcal{S}\mathcal{J}}}^{G} $$\end{document} when |G| < ∞, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{S}\mathcal{J}}}_{{{\text{ref}}}} $$\end{document} denotes the reflected antisimple primitive radical and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{S}\mathcal{J}}}^{G} $$\end{document} denotes the restricted antisimple primitive radical. Furthermore, we discuss the graded supplementing radical of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{S}\mathcal{J}}}^{G} $$\end{document}.
引用
收藏
页码:505 / 512
页数:7
相关论文
共 50 条
  • [21] On the Jacobson radical of graded rings
    Jespers, E
    Kelarev, AV
    Okninski, J
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (05) : 2185 - 2191
  • [22] ON GRADED RADICAL IDEALS OF GRADED NON-COMMUTATIVE RINGS
    El-Deken, Susan f.
    Groenewald, Nico
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (04): : 821 - 837
  • [23] On the Jacobson radical of a groupoid graded ring
    Ilic-Georgijevic, Emil
    JOURNAL OF ALGEBRA, 2021, 573 : 561 - 575
  • [24] Graded Radical W Type Algebras
    Choi, Seul Hee
    Samaranayake, Geetha
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2008, 32 (02) : 251 - 261
  • [25] ON THE JACOBSON RADICAL OF SEMIGROUP GRADED RINGS
    CLASE, MV
    JESPERS, E
    JOURNAL OF ALGEBRA, 1994, 169 (01) : 79 - 97
  • [26] COMPARING GRADED VERSIONS OF THE PRIME RADICAL
    BEATTIE, MA
    LIU, SX
    STEWART, PN
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1991, 34 (02): : 158 - 164
  • [27] Notes on the graded Jacobson radical: a graded version of the Jacobson stable set
    Ilic-Georgijevic, Emil
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (06) : 2624 - 2631
  • [28] NOTE ON ALTERNATIVE ANTISIMPLE RINGS WITH A FINITENESS CONDITION
    OSLOWSKI, BJ
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1975, 23 (12): : 1241 - 1245
  • [29] HOMOGENEITY OF THE RADICAL OF SEMIGROUP-GRADED RINGS
    CLASE, MV
    KELAREV, AV
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) : 4963 - 4975
  • [30] GROUP-ALGEBRAS PRIMITIVE MODULO THE JACOBSON RADICAL
    SRIVASTAVA, JB
    BALA, A
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1986, 89 (04): : 479 - 485