Graded Antisimple Primitive Radical

被引:0
|
作者
Jun Chao Wei
Li Bin Li
机构
[1] Yangzhou University,Department of Mathematics, College of Science
来源
Acta Mathematica Sinica | 2002年 / 18卷
关键词
Graded antisimple primitive radical; Graded subdirectly irreducible graded primitive ring; Graded supplementing radical; 16D20;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the graded version of the antisimple primitive radical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{S}\mathcal{J}}} $$\end{document}, the graded antisimple primitive radical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{S}\mathcal{J}}}_{G} $$\end{document}. We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{S}\mathcal{J}}}_{G} = {\user1{\mathcal{S}\mathcal{J}}}_{{{\text{ref}}}} = {\user1{\mathcal{S}\mathcal{J}}}^{G} $$\end{document} when |G| < ∞, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{S}\mathcal{J}}}_{{{\text{ref}}}} $$\end{document} denotes the reflected antisimple primitive radical and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{S}\mathcal{J}}}^{G} $$\end{document} denotes the restricted antisimple primitive radical. Furthermore, we discuss the graded supplementing radical of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{S}\mathcal{J}}}^{G} $$\end{document}.
引用
收藏
页码:505 / 512
页数:7
相关论文
共 50 条
  • [1] Graded Antisimple Primitive Radical
    Jun Chao WEI
    Li Bin LI Department of Mathematics
    Acta Mathematica Sinica(English Series), 2002, 18 (03) : 505 - 512
  • [2] Graded antisimple primitive radical
    Wei, JC
    Li, LB
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2002, 18 (03) : 505 - 512
  • [3] Graded antisimple radicals
    Cai, CR
    Fang, HJ
    Wei, JC
    ACTA MATHEMATICA HUNGARICA, 1999, 82 (03) : 207 - 216
  • [4] Graded antisimple radicals
    Chuanren C.
    Hongjing F.
    Junchao W.
    Acta Mathematica Hungarica, 1999, 82 (3) : 207 - 216
  • [5] LOCALLY ANTISIMPLE RADICAL
    STEWART, PN
    GLASGOW MATHEMATICAL JOURNAL, 1972, 13 (MAR) : 42 - &
  • [6] STRUCTURE OF GRADED PRIMITIVE RINGS
    LIU, SX
    CHINESE SCIENCE BULLETIN, 1991, 36 (15): : 1233 - 1236
  • [7] STRUCTURE OF GRADED PRIMITIVE RINGS
    刘绍学
    Chinese Science Bulletin, 1991, (15) : 1233 - 1236
  • [8] Weakly primitive graded rings
    Balaba, IN
    RUSSIAN MATHEMATICAL SURVEYS, 2001, 56 (06) : 1153 - 1154
  • [9] On primitive ideals in graded rings
    Smoktunowicz, Agata
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2008, 51 (03): : 460 - 466
  • [10] GRADED RADICAL GRADED SEMISIMPLE CLASSES
    YAHYA, H
    ACTA MATHEMATICA HUNGARICA, 1995, 66 (1-2) : 163 - 175