Multi-view Opinion Mining with Deep Learning

被引:0
|
作者
Ping Huang
Xijiong Xie
Shiliang Sun
机构
[1] East China Normal University,Department of Computer Science and Technology
[2] Ningbo University,The School of Information Science and Engineering
来源
Neural Processing Letters | 2019年 / 50卷
关键词
Multi-view learning; Opinion mining; Deep learning; Heterogeneous neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
With the explosive growth of social media on the Internet, people are expressing an increasing number of opinions. As for objectives like business decision making and public opinion analysis, how to make the best of these precious opinionated words is a new challenge in the field of NLP. The field of opinion mining, or sentiment analysis, has become active in recent years. Since different kinds of deep neural networks differ in their structures, they are probably extracting different features. We investigated whether features generated by heterogeneous deep neural networks can be combined by multi-view learning to improve the overall performance. With document level opinion mining being the objective, we implemented multi-view learning based on heterogeneous deep neural networks. Experiments show that multi-view learning utilizing these heterogeneous features outperforms single-view deep neural networks. Our framework makes better use of single-view data.
引用
下载
收藏
页码:1451 / 1463
页数:12
相关论文
共 50 条
  • [31] circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier
    Li, Hui
    Deng, Zhaohong
    Yang, Haitao
    Pan, Xiaoyong
    Wei, Zhisheng
    Shen, Hong-Bin
    Choi, Kup-Sze
    Wang, Lei
    Wang, Shitong
    Wu, Jing
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (01)
  • [32] Multi-view representation learning for multi-view action recognition
    Hao, Tong
    Wu, Dan
    Wang, Qian
    Sun, Jin-Sheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 48 : 453 - 460
  • [33] MULTI-VIEW METRIC LEARNING FOR MULTI-VIEW VIDEO SUMMARIZATION
    Wang, Linbo
    Fang, Xianyong
    Guo, Yanwen
    Fu, Yanwei
    2016 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2016, : 179 - 182
  • [34] Unsupervised representation learning based on the deep multi-view ensemble learning
    Maryam Koohzadi
    Nasrollah Moghadam Charkari
    Foad Ghaderi
    Applied Intelligence, 2020, 50 : 562 - 581
  • [35] Deep Incomplete Multi-View Clustering via Mining Cluster Complementarity
    Xu, Jie
    Li, Chao
    Ren, Yazhou
    Peng, Liang
    Mo, Yujie
    Shi, Xiaoshuang
    Zhu, Xiaofeng
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 8761 - 8769
  • [36] Unsupervised representation learning based on the deep multi-view ensemble learning
    Koohzadi, Maryam
    Charkari, Nasrollah Moghadam
    Ghaderi, Foad
    APPLIED INTELLIGENCE, 2020, 50 (02) : 562 - 581
  • [37] Automated Analysis of Unregistered Multi-View Mammograms With Deep Learning
    Carneiro, Gustavo
    Nascimento, Jacinto
    Bradley, Andrew P.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (11) : 2355 - 2365
  • [38] A multi-view deep learning model for pathology image diagnosis
    Wenbo Dong
    Shiliang Sun
    Minzhi Yin
    Applied Intelligence, 2023, 53 : 7186 - 7200
  • [39] Fusion of Deep Learning Models for Multi-View Image Classification
    Maguire, Brian
    Seminerio, Eleanor
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXXII, 2023, 12547
  • [40] Deep probability multi-view feature learning for data clustering
    Zhao, Liang
    Wang, Xiao
    Liu, Zhenjiao
    Yuan, Hong
    Zhao, Jingyuan
    Zhou, Shuang
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 217