Upper Bounds for Regularized Determinants

被引:0
|
作者
H. Gillet
C. Soulé
机构
[1] Department of Mathematics,
[2] Statistics,undefined
[3] and Computer Science,undefined
[4] University of Illinois at Chicago,undefined
[5] 851 S. Morgan Street,undefined
[6] Chicago,undefined
[7] IL 60607-7045,undefined
[8] USA,undefined
[9] CNRS,undefined
[10] Institut des Hautes Études Scientifiques,undefined
[11] 35,undefined
[12] Route de Chartres,undefined
[13] 91440,undefined
[14] Bures-sur-Yvette,undefined
[15] France,undefined
来源
Communications in Mathematical Physics | 1998年 / 199卷
关键词
Manifold; Vector Bundle; Riemann Surface; Line Bundle; Laplace Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We conjecture that the zeta-regularized determinant of the Laplace operator with coefficients in a holomorphic vector bundle on a compact Kähler manifold remains bounded when the metric on the bundle varies. This conjecture is shown to be true for certain classes of line bundles on Riemann surfaces.
引用
收藏
页码:99 / 115
页数:16
相关论文
共 50 条