Effect of surface carbonates on the cyclability of LiNbO3-coated NCM622 in all-solid-state batteries with lithium thiophosphate electrolytes

被引:0
|
作者
A-Young Kim
Florian Strauss
Timo Bartsch
Jun Hao Teo
Jürgen Janek
Torsten Brezesinski
机构
[1] Karlsruhe Institute of Technology (KIT),Battery and Electrochemistry Laboratory, Institute of Nanotechnology
[2] Justus-Liebig-University Giessen,Institute of Physical Chemistry & Center for Materials Science
[3] VARTA AG,undefined
[4] Mercedes-Benz Korea Ltd.,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
While still premature as an energy storage technology, bulk solid-state batteries are attracting much attention in the academic and industrial communities lately. In particular, layered lithium metal oxides and lithium thiophosphates hold promise as cathode materials and superionic solid electrolytes, respectively. However, interfacial side reactions between the individual components during battery operation usually result in accelerated performance degradation. Hence, effective surface coatings are required to mitigate or ideally prevent detrimental reactions from occurring and having an impact on the cyclability. In the present work, we examine how surface carbonates incorporated into the sol–gel-derived LiNbO3 protective coating on NCM622 [Li1+x(Ni0.6Co0.2Mn0.2)1–xO2] cathode material affect the efficiency and rate capability of pellet-stack solid-state battery cells with β-Li3PS4 or argyrodite Li6PS5Cl solid electrolyte and a Li4Ti5O12 anode. Our research data indicate that a hybrid coating may in fact be beneficial to the kinetics and the cycling performance strongly depends on the solid electrolyte used.
引用
收藏
相关论文
共 50 条
  • [31] Sulfide/Polymer Composite Solid-State Electrolytes for All-Solid-State Lithium Batteries
    Liu, Sijie
    Zhou, Le
    Zhong, Tingjun
    Wu, Xin
    Neyts, Kristiaan
    ADVANCED ENERGY MATERIALS, 2024,
  • [32] All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science
    Yao, Xiayin
    Huang, Bingxin
    Yin, Jingyun
    Peng, Gang
    Huang, Zhen
    Gao, Chao
    Liu, Deng
    Xu, Xiaoxiong
    CHINESE PHYSICS B, 2016, 25 (01)
  • [33] All-solid-state lithium batteries with inorganic solid electrolytes:Review of fundamental science
    姚霞银
    黄冰心
    尹景云
    彭刚
    黄祯
    高超
    刘登
    许晓雄
    Chinese Physics B, 2016, 25 (01) : 216 - 229
  • [34] Ceramic-polymer electrolytes for all-solid-state lithium rechargeable batteries
    Jiang, G
    Maeda, S
    Saito, Y
    Tanase, S
    Sakai, T
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) : A767 - A773
  • [35] Understanding Decomposition of Electrolytes in All-Solid-State Lithium-Sulfur Batteries
    Gamo, Hirotada
    Hikima, Kazuhiro
    Matsuda, Atsunori
    CHEMISTRY OF MATERIALS, 2022, 34 (24) : 10952 - 10963
  • [36] A Review on the Molecular Modeling of Argyrodite Electrolytes for All-Solid-State Lithium Batteries
    Ayoola, Oluwasegun M.
    Buldum, Alper
    Farhad, Siamak
    Ojo, Sammy A.
    ENERGIES, 2022, 15 (19)
  • [37] Advanced inorganic/polymer hybrid electrolytes for all-solid-state lithium batteries
    Ji, Xiaoyu
    Zhang, Yiruo
    Cao, Mengxue
    Gu, Quanchao
    Wang, Honglei
    Yu, Jinshan
    Guo, Zi-Hao
    Zhou, Xingui
    JOURNAL OF ADVANCED CERAMICS, 2022, 11 (06) : 835 - 861
  • [38] Nido-Hydroborate-Based Electrolytes for All-Solid-State Lithium Batteries
    Payandeh, Seyed Hosein
    Rentsch, Daniel
    Lodziana, Zbigniew
    Asakura, Ryo
    Bigler, Laurent
    Cerny, Radovan
    Battaglia, Corsin
    Remhof, Arndt
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (18)
  • [39] Recent progress on inorganic composite electrolytes for all-solid-state lithium batteries
    Abitonze, Maurice
    Diko, Catherine Sekyerebea
    Zhu, Yimin
    Yang, Yan
    MRS ENERGY & SUSTAINABILITY, 2024, 11 (02) : 219 - 266
  • [40] Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries
    Chun, Gin Hyung
    Shim, Joon Hyung
    Yu, Seungho
    ACS Applied Materials and Interfaces, 2022, 14 (01): : 1241 - 1248