An optimized feature selection based on genetic approach and support vector machine for heart disease

被引:0
|
作者
Chandra Babu Gokulnath
S. P. Shantharajah
机构
[1] VIT University,School of Information Technology and Engineering
来源
Cluster Computing | 2019年 / 22卷
关键词
Heart disease diagnosis; Support vector machine; Genetic algorithm; Roulette wheel selection; Receiver operating characteristic; Crossover; Mutation; Elitism;
D O I
暂无
中图分类号
学科分类号
摘要
Heart disease diagnosis is found to be a challenging issue which can offer a computerized estimate about the level of heart disease so that supplementary action can be made easy. Thus, heart disease diagnosis has expected massive attention worldwide among the healthcare environment. Optimization algorithms played a significant role in heart disease diagnosis with good efficiency. The objective of this paper is to propose an optimization function on the basis of support vector machine (SVM). This objective function is used in the genetic algorithm (GA) for selecting the more significant features to get heart disease. The experimental results of the GA–SVM are compared with the various existing feature selection algorithms such as Relief, CFS, Filtered subset, Info gain, Consistency subset, Chi squared, One attribute based, Filtered attribute, Gain ratio, and GA. The receiver operating characteristic analysis is performed to evaluate the good performance of SVM classifier. The proposed framework is demonstrated in the MATLAB environment with a dataset collected from Cleveland heart disease database.
引用
收藏
页码:14777 / 14787
页数:10
相关论文
共 50 条
  • [41] Survey of the selection moisture forecasting model feature based on support vector machine
    Hou, Zheng
    Liu, Guohui
    Song, Hongwei
    Wang, Tianyi
    Yuan, Ying
    NEAR-SURFACE GEOPHYSICS AND GEOHAZARDS - PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ENVIRONMENTAL AND ENGINEERING GEOPHYSICS, VOLS 1 AND 2, 2010, : 478 - 482
  • [42] Unsupervised feature selection algorithm based on support vector machine for network data
    Dai, Kun
    Yu, Hong-Yi
    Qiu, Wen-Bo
    Li, Qing
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2015, 45 (02): : 576 - 582
  • [43] A Method Based on Support Vector Machine for Feature Selection of Latent Semantic Features
    Li, Min-Song
    ADVANCED MATERIALS SCIENCE AND TECHNOLOGY, PTS 1-2, 2011, 181-182 : 830 - 835
  • [44] Kernel Optimization-Based Multiclass Support Vector Machine Feature Selection
    Wang, Tinghua
    Liu, Fulai
    Xiao, Mang
    Chen, Junting
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (03) : 742 - 749
  • [45] Feature Selection of Support Vector Machine based on Harmonious Cat Swarm Optimization
    Lin, Kuan-Cheng
    Mang, Kai-Yuan
    Hung, Jason C.
    2014 7TH INTERNATIONAL CONFERENCE ON UBI-MEDIA COMPUTING AND WORKSHOPS (UMEDIA), 2014, : 205 - 208
  • [46] The optional selection of micro-motion feature based on Support Vector Machine
    Li Bo
    Ren Hongmei
    Xiao Zhi-he
    Sheng Jing
    LIDAR IMAGING DETECTION AND TARGET RECOGNITION 2017, 2017, 10605
  • [47] CSO-Based Feature Selection and Parameter Optimization for Support Vector Machine
    Lin, Kuan-Cheng
    Chien, Hsu-Yu
    JCPC: 2009 JOINT CONFERENCE ON PERVASIVE COMPUTING, 2009, : 783 - 788
  • [48] Feature subset selection based on ant colony optimization and support vector machine
    Wang, Wan-liang
    Jiang, Yong
    Chen, S. Y.
    PROCEEDINGS OF THE 7TH WSEAS INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTATIONAL GEOMETRY AND ARTIFICIAL VISION (ISCGAV'-07), 2007, : 184 - +
  • [49] Human Motion Sequence Recognition Based on Feature Selection and Support Vector Machine
    Yu Yunlei
    Wang Mei
    Lin Limeng
    Zhang Chen
    2019 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE APPLICATIONS AND TECHNOLOGIES (AIAAT 2019), 2019, 646
  • [50] Stock trend prediction based on fractal feature selection and support vector machine
    Ni, Li-Ping
    Ni, Zhi-Wei
    Gao, Ya-Zhuo
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (05) : 5569 - 5576