Intercrossing of phage genomes in a phage cocktail and stable coexistence with Escherichia coli O157:H7 in anaerobic continuous culture

被引:0
|
作者
Hiroya Kunisaki
Yasunori Tanji
机构
[1] Tokyo Institute of Technology,Department of Bioengineering
来源
关键词
Bacteriophage; Phage therapy; Phage resistance; O157:H7;
D O I
暂无
中图分类号
学科分类号
摘要
The emergence of phage-resistant cells is the most serious problem for realizing phage therapy and is observed frequently if only one phage strain is used against a particular bacterium. By contrast, using multiple phages (phage cocktail) can delay or control the appearance of phage-resistant cells. Anaerobic continuous culturing of Escherichia coli O157:H7 and a cocktail of EP16, PP17, and SP22 phages were conducted. Comparison of the restriction fragment length polymorphism (RFLP) pattern of each phage genome showed a pattern different from wild type. Furthermore, the RFLP pattern of mutant phages consisted of fragments of PP17 and SP22 genome, suggesting both phages had infected the same host simultaneously (superinfection) and exchanged genomic DNA. Through observation of the binding of SYBR Gold-stained mutant phage to individual phage-resistant cells (RC), we found that clonal RC cultures were heterogeneous in their ability to bind mutant phage. The ratio of susceptibility was a few percent, which suggested that a minority of the RC population was susceptible to phage, and this heterogeneity contributes to the stable coexistence of RC and chimeric phages. The ratio of susceptible cells did not change appreciably from bacterial generation to generation.
引用
下载
收藏
页码:1533 / 1540
页数:7
相关论文
共 50 条
  • [41] Animal reservoirs of Escherichia coli O157:[H7]
    Beutin, L
    KnollmannSchanbacher, G
    Rietschel, W
    Seeger, H
    VETERINARY RECORD, 1996, 139 (03) : 70 - 71
  • [42] Decontaminating beef for Escherichia coli O157:H7
    Delazari, I
    Iaria, ST
    Riemann, HP
    Cliver, DO
    Mori, T
    JOURNAL OF FOOD PROTECTION, 1998, 61 (05) : 547 - 550
  • [43] Escherichia coli O157:H7, an emerging pathogen
    Mariani-Kurkdjian, P
    Bingen, E
    PRESSE MEDICALE, 1999, 28 (37): : 2067 - 2074
  • [44] Incidence of Escherichia coli O157:H7 in Thailand
    Sukhumungoon, Pharanai
    SAINS MALAYSIANA, 2015, 44 (02): : 261 - 267
  • [45] Thermal inactivation of Escherichia coli O157:H7
    Stringer, SC
    George, SM
    Peck, MW
    JOURNAL OF APPLIED MICROBIOLOGY, 2000, 88 : 79S - 89S
  • [46] Microarray analysis of Escherichia coli O157:H7
    Jin, Hui-Ying
    Tao, Kai-Hua
    Li, Yue-Xi
    Li, Fa-Qing
    Li, Su-Qin
    WORLD JOURNAL OF GASTROENTEROLOGY, 2005, 11 (37) : 5811 - 5815
  • [47] Pseudomembranous colitis with Escherichia coli O157:H7
    Uc, A
    Mitros, FA
    Kao, SCS
    Sanders, KD
    JOURNAL OF PEDIATRIC GASTROENTEROLOGY AND NUTRITION, 1997, 24 (05): : 590 - 593
  • [48] An Escherichia coli O157:H7 outbreak?: Reply
    Friedman, MS
    CLINICAL INFECTIOUS DISEASES, 2000, 30 (06) : 984 - 984
  • [49] Absence of Escherichia coli O157:H7 in waters
    Belloso, CO
    INTERDISCIPLINARY PERSPECTIVES ON DRINKING WATER RISK ASSESSMENT AND MANAGEMENT, 2000, (260): : 33 - 35
  • [50] Suspected Escherichia coli O157:H7 in beef
    不详
    EXPERT REVIEW OF ANTI-INFECTIVE THERAPY, 2007, 5 (03) : 338 - 339