Detection of Malicious Executable Files Based on Clustering of Activities

被引:0
|
作者
R. A. Ognev
E. V. Zhukovskii
D. P. Zegzhda
机构
[1] Peter the Great St. Petersburg Polytechnic University,
关键词
classification; clustering; malware; malicious behavior; machine learning; behavioral analysis; dynamic analysis; computer security;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1092 / 1098
页数:6
相关论文
共 50 条
  • [31] Executable based vulnerability detection
    Hu, Chaojian
    Zhang, Jia
    Li, Zhoujun
    Shi, Zhiwei
    Zhang, Yan
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2009, 49 (SUPPL. 2): : 2176 - 2180
  • [32] On the Design of Supervised Binary Classifiers for Malware Detection using Portable Executable Files
    Shukla, Hrushikesh
    Patil, Sonali
    Solanki, Dewang
    Singh, Lucky
    Swarnkar, Mayank
    Thakkar, Hiren Kumar
    [J]. PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC 2019), 2019, : 141 - 146
  • [33] RAT-based Malicious Activities Detection on Enterprise Internal Networks
    Yamada, Masahiro
    Morinaga, Masanobu
    Unno, Yuki
    Torii, Satoru
    Takenaka, Masahiko
    [J]. 2015 10TH INTERNATIONAL CONFERENCE FOR INTERNET TECHNOLOGY AND SECURED TRANSACTIONS (ICITST), 2015, : 321 - 325
  • [34] A Clustering-Based Scoring Mechanism for Malicious Model Detection in Federated Learning
    Caglayan, Cem
    Yurdakul, Arda
    [J]. 2022 25TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD), 2022, : 224 - 231
  • [35] A Novel Solutions for Malicious Code Detection and Family Clustering Based on Machine Learning
    Yang, Hangfeng
    Li, Shudong
    Wu, Xiaobo
    Lu, Hui
    Han, Weihong
    [J]. IEEE ACCESS, 2019, 7 : 148853 - 148860
  • [36] Static detection of application backdoorsDetecting both malicious software behavior and malicious indicators from the static analysis of executable code
    Chris Wysopal
    Chris Eng
    Tyler Shields
    [J]. Datenschutz und Datensicherheit - DuD, 2010, 34 (3) : 149 - 155
  • [37] De-obfuscation and Detection of Malicious PDF Files with High Accuracy
    Lu, Xun
    Zhuge, Jianwei
    Wang, Ruoyu
    Cao, Yinzhi
    Chen, Yan
    [J]. PROCEEDINGS OF THE 46TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, 2013, : 4890 - 4899
  • [38] A Conformalized Density-based Clustering Analysis of Malicious Traffic for Botnet Detection
    Kiani, Bahareh Mohammadi
    [J]. CONFORMAL AND PROBABILISTIC PREDICTION AND APPLICATIONS, VOL 128, 2020, 128 : 244 - 256
  • [39] Enhanced capsule network-based executable files malware detection and classification-deep learning approach
    Shelar, Manoj D.
    Rao, S. Srinivasa
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (04):
  • [40] ALPD: Active Learning Framework for Enhancing the Detection of Malicious PDF Files
    Nissim, Nir
    Cohen, Aviad
    Moskovitch, Robert
    Shabtai, Assaf
    Edry, Mattan
    Bar-Ad, Oren
    Elovici, Yuval
    [J]. 2014 IEEE JOINT INTELLIGENCE AND SECURITY INFORMATICS CONFERENCE (JISIC), 2014, : 91 - 98