Thermo-kinetic analysis, thermodynamic parameters and comprehensive pyrolysis index of Melia azedarach sawdust as a genesis of bioenergy

被引:0
|
作者
Nidhi Agnihotri
Goutam Kishore Gupta
Monoj Kumar Mondal
机构
[1] Indian Institute of Technology (Banaras Hindu University),Department of Chemical Engineering and Technology
来源
关键词
sawdust; Thermogravimetric analysis; Kinetics and reaction mechanism; Thermodynamic parameters; Comprehensive pyrolysis index;
D O I
暂无
中图分类号
学科分类号
摘要
Energy demands are dynamic and intensifying demand of energy led to execute this study in order to analyze the thermal degradation characteristics of Melia azedarach sawdust (MAS) collected from sawmill intending to examine its pyrolytic performance for biofuel production. The inceptive characterizations which include proximate, ultimate, component analysis and higher heating value (HHV) were carried out so as to scrutinize its worth for pyrolysis. Furthermore, thermogravimetric (TG) experiments were performed in temperature hovering from ambient to 900 ℃ at three different slow rates of heating (10, 20 and 30 ℃ min−1) under inert condition. Findings of TG analysis revealed 210 to 480 ℃ as the maximum devolatilization temperature range during thermal degradation of MAS. Kinetic and thermodynamic parameters were estimated using three iso-conversional models, i.e. Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Starink and average activation energy was found to be 161.18, 162.68 and 161.41 kJ mol−1, respectively. The obtained values of Gibbs free energy (ΔG) were 185.98, 185.91 and 185.97 kJ mol−1 and that of change in enthalpy (ΔH) were 155.91, 157.47 and 156.19 kJ mol−1 for KAS, FWO and Starink models, respectively. Master plot along with Criado method revealed a complex mechanism of the reaction. Average and maximum decomposition rates, as well as initial devolatilization and peak temperatures, shifted to higher values with an increase in heating rate. Comprehensive pyrolysis index (CPI) exhibited higher value at higher heating rate which indicates the suitability of pyrolysis of MAS at a high heating rate. All these findings coupled with 15.43 MJ kg−1 HHV inferred the suitability of MAS for pyrolysis as it exhibits remarkably high potential for biofuel generation. Thus, it can be a concrete step towards clean energy generation along with a balance between economy and ecology with desire to strengthen our energy self-sufficiency.
引用
收藏
页码:1863 / 1880
页数:17
相关论文
共 49 条
  • [21] Co-pyrolysis of lychee and plastic waste as a source of bioenergy through kinetic study and thermodynamic analysis
    Zhang, Yu
    Ahmad, Muhammad Sajjad
    Shen, Boxiong
    Yuan, Peng
    Shah, Imran Ali
    Zhu, Qi
    Ibrahim, Muhammad
    Bokhari, Awais
    Klemes, Jiri Jaromir
    Elkamel, Ali
    ENERGY, 2022, 256
  • [22] Pyrolysis of cocoa shell and its bioenergy potential: evaluating the kinetic triplet, thermodynamic parameters, and evolved gas analysis using TGA-FTIR
    Mumbach, Guilherme Davi
    Francisco Alves, Jose Luiz
    Gomes da Silva, Jean Constantino
    Di Domenico, Michele
    de Sena, Rennio Felix
    Marangoni, Cintia
    Francisco Machado, Ricardo Antonio
    Bolzan, Ariovaldo
    BIOMASS CONVERSION AND BIOREFINERY, 2022, 12 (03) : 723 - 739
  • [23] Pyrolysis of cocoa shell and its bioenergy potential: evaluating the kinetic triplet, thermodynamic parameters, and evolved gas analysis using TGA-FTIR
    Guilherme Davi Mumbach
    José Luiz Francisco Alves
    Jean Constantino Gomes da Silva
    Michele Di Domenico
    Rennio Felix de Sena
    Cintia Marangoni
    Ricardo Antonio Francisco Machado
    Ariovaldo Bolzan
    Biomass Conversion and Biorefinery, 2022, 12 : 723 - 739
  • [24] Investigating Kinetic and Thermodynamic Parameters in the Pyrolysis of Sheep Manure Using Thermogravimetric Analysis
    Siswantara, Ahmad Indra
    Rizianiza, Illa
    Mahdi, Diyas Prawara
    Farhan, Tanwir Ahmad
    Widiawati, Candra Damis
    Syafei, M. Hilman Gumelar
    Syuriadi, Adi
    JOURNAL OF SUSTAINABLE DEVELOPMENT OF ENERGY WATER AND ENVIRONMENT SYSTEMS-JSDEWES, 2024, 12 (03):
  • [25] Investigation of kinetic and thermodynamic parameters for pyrolysis of peanut shell using thermogravimetric analysis
    Varma, Anil Kumar
    Singh, Shweta
    Rathore, Ashwani Kumar
    Thakur, Lokendra Singh
    Shankar, Ravi
    Mondal, Prasenjit
    BIOMASS CONVERSION AND BIOREFINERY, 2022, 12 (11) : 4877 - 4888
  • [26] Investigation of kinetic and thermodynamic parameters for pyrolysis of peanut shell using thermogravimetric analysis
    Anil Kumar Varma
    Shweta Singh
    Ashwani Kumar Rathore
    Lokendra Singh Thakur
    Ravi Shankar
    Prasenjit Mondal
    Biomass Conversion and Biorefinery, 2022, 12 : 4877 - 4888
  • [27] Evaluation of Kinetic and Thermodynamic Parameters of Pyrolysis and Combustion Processes for Bamboo Using Thermogravimetric Analysis
    Lei, Jialiu
    Wang, Yao
    Wang, Qihui
    Deng, Shiru
    Fu, Yongjun
    PROCESSES, 2024, 12 (11)
  • [28] Investigation on prospective bioenergy from pyrolysis of macadamia nut shell waste using multicomponent Fraser-Suzuki kinetic model, kinetic triplet and thermodynamic parameters
    Wang, Yang
    Yang, Shiliang
    Bao, Guirong
    Wang, Hua
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 114
  • [29] Microwave co-pyrolysis of kitchen food waste and rice straw for waste reduction and sustainable biohydrogen production: Thermo-kinetic analysis and evolved gas analysis
    Nyambura, Samuel Mbugua
    Wang Jufei
    Li Hua
    Feng Xuebin
    Pan Xingjia
    Li Bohong
    Ahmad, Riaz
    Xu Jialiang
    Bertrand, Gbenontin, V
    Ndiithi, Joseph
    Li Xuhui
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [30] Kinetic and thermodynamic parameters of petroleum pitch pyrolysis using thermogravimetric analysis (TGA): Part I
    Sahoo, Khokan
    Raja, Kanuparthy Naga
    Kumbhakarna, Neeraj
    Kumar, Sudarshan
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2025,