Perturbations of the Defocusing Nonlinear Schrödinger Equation

被引:0
|
作者
B. Grébert
T. Kappeler
机构
[1] UMR 6629 CNRS,Laboratoire Jean Leray
[2] Université de Nantes,Institut für Mathematik
[3] Universität Zürich,undefined
关键词
D O I
10.1007/s00032-002-0018-2
中图分类号
学科分类号
摘要
引用
收藏
页码:141 / 174
页数:33
相关论文
共 50 条
  • [11] On the exact solution of the geometric optics approximation of the defocusing nonlinear Schrödinger equation
    Wright, Otis C.
    Forest, M. Gregory
    McLaughlin, K.T.-R.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 257 (3-4): : 170 - 174
  • [12] Asymptotic behavior of solutions of defocusing integrable discrete nonlinear Schrödinger equation
    Hideshi Yamane
    Frontiers of Mathematics in China, 2013, 8 : 1077 - 1083
  • [13] Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation
    J. Colliander
    M. Keel
    G. Staffilani
    H. Takaoka
    T. Tao
    Inventiones mathematicae, 2010, 181 : 39 - 113
  • [14] On general solitons in the parity-time-symmetric defocusing nonlinear Schrödinger equation
    Jiguang Rao
    Jingsong He
    Dumitru Mihalache
    Yi Cheng
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [15] The Three-Component Defocusing Nonlinear Schrödinger Equation with Nonzero Boundary Conditions
    Gino Biondini
    Daniel K. Kraus
    Barbara Prinari
    Communications in Mathematical Physics, 2016, 348 : 475 - 533
  • [16] Homoclinic Tubes in Discrete Nonlinear Schrödinger Equation under Hamiltonian Perturbations
    Yanguang (Charles) Li
    Nonlinear Dynamics, 2003, 31 : 393 - 434
  • [17] 2D-defocusing nonlinear Schrödinger equation with random data on irrational tori
    Chenjie Fan
    Yumeng Ou
    Gigliola Staffilani
    Hong Wang
    Stochastics and Partial Differential Equations: Analysis and Computations, 2021, 9 : 142 - 206
  • [18] Dark Solitons for the Defocusing Cubic Nonlinear Schr?dinger Equation with the Spatially Periodic Potential and Nonlinearity
    闫振亚
    闫方驰
    Communications in Theoretical Physics, 2015, 64 (09) : 309 - 319
  • [19] The Defocusing Nonlinear Schrödinger Equation with a Nonzero Background: Painlevé Asymptotics in Two Transition Regions
    Zhaoyu Wang
    Engui Fan
    Communications in Mathematical Physics, 2023, 402 : 2879 - 2930
  • [20] A focusing-defocusing intermediate nonlinear Schrödinger system
    Berntson, Bjorn K.
    Fagerlund, Alexander
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 451