Asymptotic Behaviour of the Ground State of Singularly Perturbed Elliptic Equations

被引:0
|
作者
Andrey L. Piatnitski
机构
[1] P.N. Lebedev Physical Institute RAS,
[2] Leninski prospect 53,undefined
[3] Moscow 117333,undefined
[4] Russia.¶E-mail: andrey@sci.lpi.msk.su,undefined
来源
关键词
Manifold; Asymptotic Behaviour; Riemannian Manifold; Bounded Domain; Elliptic Equation;
D O I
暂无
中图分类号
学科分类号
摘要
The ground state of a singularly perturbed nonselfadjoint elliptic operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} defined on a smooth compact Riemannian manifold with metric aij(x)=(aij(x))−1, is studied. We investigate the limiting behaviour of the first eigenvalue of this operator as μ goes to zero, and find the logarithmic asymptotics of the first eigenfunction everywhere on the manifold. The results are formulated in terms of auxiliary variational problems on the manifold. This approach also allows to study the general singularly perturbed second order elliptic operator on a bounded domain in Rn.
引用
收藏
页码:527 / 551
页数:24
相关论文
共 50 条