Runtime Analysis for Self-adaptive Mutation Rates

被引:0
|
作者
Benjamin Doerr
Carsten Witt
Jing Yang
机构
[1] Institut Polytechnique de Paris,Laboratoire d’Informatique (LIX), CNRS, École Polytechnique
[2] Technical University of Denmark,DTU Compute
来源
Algorithmica | 2021年 / 83卷
关键词
Evolutionary algorithms; Self-adaptive; Runtime analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We propose and analyze a self-adaptive version of the (1,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\lambda )$$\end{document} evolutionary algorithm in which the current mutation rate is encoded within the individual and thus also subject to mutation. A rigorous runtime analysis on the OneMax benchmark function reveals that a simple local mutation scheme for the rate leads to an expected optimization time (number of fitness evaluations) of O(nλ/logλ+nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\lambda /\log \lambda +n\log n)$$\end{document} when λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} is at least Clnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \ln n$$\end{document} for some constant C>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C > 0$$\end{document}. For all values of λ≥Clnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \ge C \ln n$$\end{document}, this performance is asymptotically best possible among all λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}-parallel mutation-based unbiased black-box algorithms. Our result rigorously proves for the first time that self-adaptation in evolutionary computation can find complex optimal parameter settings on the fly. In particular, it gives asymptotically the same performance as the relatively complicated self-adjusting scheme for the mutation rate proposed by Doerr, Gießen, Witt, and Yang (Algorithmica 2019). On the technical side, the paper contributes new tools for the analysis of two-dimensional drift processes arising in the analysis of dynamic parameter choices in EAs, including bounds on occupation probabilities in processes with non-constant drift.
引用
收藏
页码:1012 / 1053
页数:41
相关论文
共 50 条
  • [31] Runtime Reasoning of Requirements for Self-Adaptive Systems using AI Planning Techniques
    Hassan, Zara
    Qureshi, Nauman
    Hashmi, Muhammad Adnan
    Ali, Arshad
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (10) : 129 - 137
  • [32] HARS: a Heterogeneity-Aware Runtime System for Self-Adaptive Multithreaded Applications
    Yun, Jaeyoung
    Park, Jinsu
    Baek, Woongki
    [J]. 2015 52ND ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2015,
  • [33] Runtime Software Architecture-Based Reliability Prediction for Self-Adaptive Systems
    Li, Qiuying
    Lu, Minyan
    Gu, Tingyang
    Wu, Yumei
    [J]. SYMMETRY-BASEL, 2022, 14 (03):
  • [34] RINGA: Design and verification of finite state machine for self-adaptive software at runtime
    Lee, Euijong
    Kim, Young-Gab
    Seo, Young-Duk
    Seol, Kwangsoo
    Baik, Doo-Kwon
    [J]. INFORMATION AND SOFTWARE TECHNOLOGY, 2018, 93 : 200 - 222
  • [35] Runtime Models for Analysing and Evaluating Quality Attributes of Self-Adaptive Software: A Survey
    Gu, Tingyang
    Lu, Minyan
    Li, Luyi
    [J]. 12TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY, AND SAFETY (ICRMS 2018), 2018, : 52 - 61
  • [36] CONVERGENCE ANALYSIS OF SELF-ADAPTIVE EQUALIZERS
    MACCHI, O
    EWEDA, E
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1984, 30 (02) : 161 - 176
  • [37] Rigorous Runtime Analysis of Inversely Fitness Proportional Mutation Rates
    Zarges, Christine
    [J]. PARALLEL PROBLEM SOLVING FROM NATURE - PPSN X, PROCEEDINGS, 2008, 5199 : 112 - 122
  • [38] An Experimental Evaluation on Runtime Verification of Self-adaptive Systems in the Presence of Uncertain Transition Probabilities
    Ogawa, Kento
    Nakagawa, Hiroyuki
    Tsuchiya, Tatsuhiro
    [J]. SOFTWARE ENGINEERING AND FORMAL METHODS (SEFM 2015), 2015, 9509 : 253 - 265
  • [39] Genetic Algorithm with Self-Adaptive Mutation Controlled by Chromosome Similarity
    Smullen, Daniel
    Gillett, Jonathan
    Heron, Joseph
    Rahnamayan, Shahryar
    [J]. 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 504 - 511
  • [40] Self-adaptive Differential Evolution Algorithm with the New Mutation Strategies
    Li, Huirong
    [J]. 2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012), 2013, 38 : 141 - +