Runtime Analysis for Self-adaptive Mutation Rates

被引:0
|
作者
Benjamin Doerr
Carsten Witt
Jing Yang
机构
[1] Institut Polytechnique de Paris,Laboratoire d’Informatique (LIX), CNRS, École Polytechnique
[2] Technical University of Denmark,DTU Compute
来源
Algorithmica | 2021年 / 83卷
关键词
Evolutionary algorithms; Self-adaptive; Runtime analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We propose and analyze a self-adaptive version of the (1,λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\lambda )$$\end{document} evolutionary algorithm in which the current mutation rate is encoded within the individual and thus also subject to mutation. A rigorous runtime analysis on the OneMax benchmark function reveals that a simple local mutation scheme for the rate leads to an expected optimization time (number of fitness evaluations) of O(nλ/logλ+nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\lambda /\log \lambda +n\log n)$$\end{document} when λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} is at least Clnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \ln n$$\end{document} for some constant C>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C > 0$$\end{document}. For all values of λ≥Clnn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \ge C \ln n$$\end{document}, this performance is asymptotically best possible among all λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document}-parallel mutation-based unbiased black-box algorithms. Our result rigorously proves for the first time that self-adaptation in evolutionary computation can find complex optimal parameter settings on the fly. In particular, it gives asymptotically the same performance as the relatively complicated self-adjusting scheme for the mutation rate proposed by Doerr, Gießen, Witt, and Yang (Algorithmica 2019). On the technical side, the paper contributes new tools for the analysis of two-dimensional drift processes arising in the analysis of dynamic parameter choices in EAs, including bounds on occupation probabilities in processes with non-constant drift.
引用
收藏
页码:1012 / 1053
页数:41
相关论文
共 50 条
  • [1] Runtime Analysis for Self-adaptive Mutation Rates
    Doerr, Benjamin
    Witt, Carsten
    Yang, Jing
    [J]. GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 1475 - 1482
  • [2] Runtime Analysis for Self-adaptive Mutation Rates
    Doerr, Benjamin
    Witt, Carsten
    Yang, Jing
    [J]. ALGORITHMICA, 2021, 83 (04) : 1012 - 1053
  • [3] FPGA implementation of evolvable characters recognizer with self-adaptive mutation rates
    Wang, Jin
    Piao, Chang Hao
    Lee, Chong Ho
    [J]. ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 286 - +
  • [4] Runtime Verification of Self-Adaptive Systems with Changing Requirements
    Carwehl, Marc
    Vogel, Thomas
    Rodrigues, Gena Nunes
    Grunske, Lars
    [J]. 2023 IEEE/ACM 18TH SYMPOSIUM ON SOFTWARE ENGINEERING FOR ADAPTIVE AND SELF-MANAGING SYSTEMS, SEAMS, 2023, : 104 - 114
  • [5] Runtime Evolution of the Adaptation Logic in Self-Adaptive Systems
    Roth, Felix Maximilian
    Krupitzer, Christian
    Becker, Christian
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING, 2015, : 141 - 142
  • [6] Self-Adaptive Software Needs Quantitative Verification at Runtime
    Calinescu, Radu
    Ghezzi, Carlo
    Kwiatkowska, Marta
    Mirandola, Raffaela
    [J]. COMMUNICATIONS OF THE ACM, 2012, 55 (09) : 69 - 77
  • [7] Self-adaptive mutation in ZCS controllers
    Bull, L
    Hurst, J
    [J]. REAL-WORLD APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2000, 1803 : 339 - 346
  • [8] Self-Adaptive Mutation in the Differential Evolution
    Pedrosa Silva, Rodrigo C.
    Lopes, Rodolfo A.
    Guimaraes, Frederico G.
    [J]. GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 1939 - 1946
  • [9] Analysing and modelling runtime architectural stability for self-adaptive software
    Salama, Maria
    Bahsoon, Rami
    [J]. JOURNAL OF SYSTEMS AND SOFTWARE, 2017, 133 : 95 - 112
  • [10] Probabilistic approximation of runtime quantitative verification in self-adaptive systems
    Nia, Mehran Alidoost
    Kargahi, Mehdi
    Faghih, Fathiyeh
    [J]. MICROPROCESSORS AND MICROSYSTEMS, 2020, 72