Just-in-time defect prediction for mobile applications: using shallow or deep learning?

被引:0
|
作者
Raymon van Dinter
Cagatay Catal
Görkem Giray
Bedir Tekinerdogan
机构
[1] Wageningen University & Research,Information Technology Group
[2] Sioux Technologies,Department of Computer Science and Engineering
[3] Qatar University,undefined
来源
Software Quality Journal | 2023年 / 31卷
关键词
Just-in-time defect prediction; Shallow learning; XGBoost; Deep learning; Imbalanced learning;
D O I
暂无
中图分类号
学科分类号
摘要
Just-in-time defect prediction (JITDP) research is increasingly focused on program changes instead of complete program modules within the context of continuous integration and continuous testing paradigm. Traditional machine learning-based defect prediction models have been built since the early 2000s, and recently, deep learning-based models have been designed and implemented. While deep learning (DL) algorithms can provide state-of-the-art performance in many application domains, they should be carefully selected and designed for a software engineering problem. In this research, we evaluate the performance of traditional machine learning algorithms and data sampling techniques for JITDP problems and compare the model performance with the performance of a DL-based prediction model. Experimental results demonstrated that DL algorithms leveraging sampling methods perform significantly worse than the decision tree-based ensemble method. The XGBoost-based model appears to be 116 times faster than the multilayer perceptron-based (MLP) prediction model. This study indicates that DL-based models are not always the optimal solution for software defect prediction, and thus, shallow, traditional machine learning can be preferred because of better performance in terms of accuracy and time parameters.
引用
下载
收藏
页码:1281 / 1302
页数:21
相关论文
共 50 条
  • [21] Graph-based machine learning improves just-in-time defect prediction
    Bryan, Jonathan
    Moriano, Pablo
    PLOS ONE, 2023, 18 (04):
  • [22] A Systematic Survey of Just-in-Time Software Defect Prediction
    Zhao, Yunhua
    Damevski, Kostadin
    Chen, Hui
    ACM COMPUTING SURVEYS, 2023, 55 (10)
  • [23] An Empirical Study on Just-in-time Conformal Defect Prediction
    Shahini, Xhulja
    Metzger, Andreas
    Pohl, Klaus
    2024 IEEE/ACM 21ST INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES, MSR, 2024, : 88 - 99
  • [24] Just-in-time Software Defect Prediction: Literature Review
    Cai L.
    Fan Y.-R.
    Yan M.
    Xia X.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (05): : 1288 - 1307
  • [25] Just-In-Time Defect Prediction for Intellignet Computing Frameworks
    Ge J.
    Yu H.-Q.
    Fan G.-S.
    Tang J.-H.
    Huang Z.-J.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (09):
  • [26] ApacheJIT: A Large Dataset for Just-In-Time Defect Prediction
    Keshavarz, Hossein
    Nagappan, Meiyappan
    2022 MINING SOFTWARE REPOSITORIES CONFERENCE (MSR 2022), 2022, : 191 - 195
  • [27] Just-in-Time Software Defect Prediction Techniques: A Survey
    Alnagi, Eman
    Azzeh, Mohammad
    2024 15TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS, ICICS 2024, 2024,
  • [28] The Impact of Duplicate Changes on Just-in-Time Defect Prediction
    Duan, Ruifeng
    Xu, Haitao
    Fan, Yuanrui
    Yan, Meng
    IEEE TRANSACTIONS ON RELIABILITY, 2022, 71 (03) : 1294 - 1308
  • [29] JITBot: An Explainable Just-In-Time Defect Prediction Bot
    Khanan, Chaiyakarn
    Luewichana, Worawit
    Pruktharathikoon, Krissakorn
    Jiarpakdee, Jirayus
    Tantithamthavorn, Chakkrit
    Choetkiertikul, Morakot
    Ragkhitwetsagul, Chaiyong
    Sunetnanta, Thanwadee
    2020 35TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING (ASE 2020), 2020, : 1336 - 1339
  • [30] The impact of context metrics on just-in-time defect prediction
    Kondo, Masanari
    German, Daniel M.
    Mizuno, Osamu
    Choi, Eun-Hye
    EMPIRICAL SOFTWARE ENGINEERING, 2020, 25 (01) : 890 - 939