On local influence for elliptical linear models

被引:0
|
作者
Shuangzhe Liu
机构
[1] Universität Basel,Institut für Statistik und Ökonometrie
来源
Statistical Papers | 2000年 / 41卷
关键词
Likelihood displacement; observed information matrix; Delta matrix; regression diagnostics; matrix differential; 62J05;
D O I
暂无
中图分类号
学科分类号
摘要
The local influence method plays an important role in regression diagnostics and sensitivity analysis. To implement it, we need the Delta matrix for the underlying scheme of perturbations, in addition to the observed information matrix under the postulated model. Galea, Paula and Bolfarine (1997) has recently given the observed information matrix and the Delta matrix for a scheme of scale perturbations and has assessed of local influence for elliptical linear regression models. In the present paper, we consider the same elliptical linear regression models. We study the schemes of scale, predictor and response perturbations, and obtain their corresponding Delta matrices, respectively. To illustrate the methodology for assessment of local influence for these schemes and the implementation of the obtained results, we give an example.
引用
收藏
页码:211 / 224
页数:13
相关论文
共 50 条
  • [21] Local influence for Student-t partially linear models
    Ibacache-Pulgar, German
    Paula, Gilberto A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) : 1462 - 1478
  • [22] Assessing local cluster influence in generalized linear mixed models
    Xiang, LM
    Lee, AH
    Tse, SK
    [J]. JOURNAL OF APPLIED STATISTICS, 2003, 30 (04) : 349 - 359
  • [23] Linear local models as local approximators
    Baur, M
    Bocklisch, SF
    [J]. SYSTEM STRUCTURE AND CONTROL 2001, VOLS 1 AND 2, 2001, : 615 - 620
  • [24] LOCAL PREDICTIVE INFLUENCE IN BAYESIAN LINEAR-MODELS WITH CONJUGATE PRIORS
    LAVINE, M
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1992, 21 (01) : 269 - 283
  • [25] Assessing Local Influence in Linear Regression Models with Specific Dispersion Matrices
    张波
    唐瑛
    [J]. 云南大学学报(自然科学版), 1998, (06)
  • [26] Perturbation Selection and Local Influence Analysis for Generalized Linear Mixed Models
    Chen, Fei
    Zhu, Hong-Tu
    Song, Xin-Yuan
    Lee, Sik-Yum
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (04) : 826 - 842
  • [27] Local influence in linear mixed measurement error models with ridge estimation
    Maksaei, Najmieh
    Rasekh, Abdolrahman
    Babadi, Babak
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [28] Local Influence Analysis for Skew-Normal Linear Mixed Models
    Montenegro, Lourdes C.
    Lachos, Victor H.
    Bolfarine, Heleno
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (04) : 484 - 496
  • [29] Linear regression models with slash-elliptical errors
    Alcantara, Izabel Cristina
    Cysneiros, Francisco Jose A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 : 153 - 164
  • [30] Bayesian sensitivity analysis in elliptical linear regression models
    Arellano-Valle, RB
    Galea-Rojas, M
    Zuazola, PI
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 86 (01) : 175 - 199