On nonrational divisors over non-Gorenstein terminal singularities

被引:0
|
作者
Stepanov D.A. [1 ]
机构
[1] Bauman Moscow State Technical University, Department of Mathematical Modeling
基金
俄罗斯基础研究基金会;
关键词
Toric Variety; Exceptional Divisor; Hyperelliptic Curve; Quotient Singularity; Singular Curve;
D O I
10.1007/s10958-007-0105-6
中图分类号
学科分类号
摘要
Let (X, o) be a germ of a 3-dimensional terminal singularity of index m ≥ 2. If (X, o) has type cAx/4, cD/3-3, cD/2-2, or cE/2, then we assume that the standard equation of X in ℂ4/ℤ m is nondegenerate with respect to its Newton diagram. Let π: Y → X be a resolution. We show that there are at most 2 nonrational divisors E i , i = 1, 2, on Y such that π(E i ) = o and the discrepancy a(E i , X) is at most 1. When such divisors exist, we describe them as exceptional divisors of certain blowups of (X, o) and study their birational type. © Springer Science+Business Media, Inc. 2007.
引用
收藏
页码:1977 / 1988
页数:11
相关论文
共 47 条
  • [1] Trigonal non-Gorenstein curves
    Martins, Renato Vidal
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (03) : 873 - 882
  • [2] Gonality of non-Gorenstein curves of genus five
    Lia Feital
    Renato Vidal Martins
    Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 : 649 - 670
  • [3] Gonality of non-Gorenstein curves of genus five
    Feital, Lia
    Martins, Renato Vidal
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (04): : 649 - 670
  • [4] Calabi-Yau threefolds with non-Gorenstein involutions
    Lee, Nam-Hoon
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) : 3449 - 3458
  • [5] On trigonal non-Gorenstein curves with zero Maroni invariant
    Martins, RV
    JOURNAL OF ALGEBRA, 2004, 275 (02) : 453 - 470
  • [6] On gonality, scrolls, and canonical models of non-Gorenstein curves
    Martins, Renato Vidal
    Lara, Danielle
    Souza, Jairo Menezes
    GEOMETRIAE DEDICATA, 2019, 203 (01) : 111 - 133
  • [7] On gonality, scrolls, and canonical models of non-Gorenstein curves
    Renato Vidal Martins
    Danielle Lara
    Jairo Menezes Souza
    Geometriae Dedicata, 2019, 203 : 111 - 133
  • [8] Non-Gorenstein loci of Ehrhart rings of chain and order polytopes
    Miyazaki, Mitsuhiro
    Page, Janet
    JOURNAL OF ALGEBRA, 2024, 643 : 241 - 283
  • [9] Some non-Gorenstein Hecke algebras attached to spaces of modular forms
    Kilford, LJP
    JOURNAL OF NUMBER THEORY, 2002, 97 (01) : 157 - 164
  • [10] Threefold extremal curve germs with one non-Gorenstein point
    Mori, S.
    Prokhorov, Yu G.
    IZVESTIYA MATHEMATICS, 2019, 83 (03) : 565 - 612