Gonality of non-Gorenstein curves of genus five

被引:0
|
作者
Lia Feital
Renato Vidal Martins
机构
[1] CCE,Departamento de Matemática
[2] UFV,Departamento de Matemática
[3] ICEx,undefined
[4] UFMG,undefined
关键词
singular curve; non-Gorenstein curve; Max Noether theorem; Primary: 14H20; Secondary: 14H45, 14H51;
D O I
暂无
中图分类号
学科分类号
摘要
We establish sufficient conditions for some curves to be trigonal and derive from them that most of non-Gorenstein curves of genus five are so. Afterwards, we show that the gonality of such a curve ranges from 2 to 5. Gonality is understood within a broader context, i.e., the gd1 may possibly admit a base point and correspond to a torsion free sheaf of rank one instead of a line bundle. This study comes along with a thorough description of possible canonical models and kinds of singularities.
引用
收藏
页码:649 / 670
页数:21
相关论文
共 50 条
  • [1] Gonality of non-Gorenstein curves of genus five
    Feital, Lia
    Martins, Renato Vidal
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (04): : 649 - 670
  • [2] On gonality, scrolls, and canonical models of non-Gorenstein curves
    Martins, Renato Vidal
    Lara, Danielle
    Souza, Jairo Menezes
    GEOMETRIAE DEDICATA, 2019, 203 (01) : 111 - 133
  • [3] On gonality, scrolls, and canonical models of non-Gorenstein curves
    Renato Vidal Martins
    Danielle Lara
    Jairo Menezes Souza
    Geometriae Dedicata, 2019, 203 : 111 - 133
  • [4] Trigonal non-Gorenstein curves
    Martins, Renato Vidal
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (03) : 873 - 882
  • [5] On trigonal non-Gorenstein curves with zero Maroni invariant
    Martins, RV
    JOURNAL OF ALGEBRA, 2004, 275 (02) : 453 - 470
  • [6] On nonrational divisors over non-Gorenstein terminal singularities
    Stepanov D.A.
    Journal of Mathematical Sciences, 2007, 142 (2) : 1977 - 1988
  • [7] Calabi-Yau threefolds with non-Gorenstein involutions
    Lee, Nam-Hoon
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) : 3449 - 3458
  • [8] Non-Gorenstein loci of Ehrhart rings of chain and order polytopes
    Miyazaki, Mitsuhiro
    Page, Janet
    JOURNAL OF ALGEBRA, 2024, 643 : 241 - 283
  • [9] Some non-Gorenstein Hecke algebras attached to spaces of modular forms
    Kilford, LJP
    JOURNAL OF NUMBER THEORY, 2002, 97 (01) : 157 - 164
  • [10] Threefold extremal curve germs with one non-Gorenstein point
    Mori, S.
    Prokhorov, Yu G.
    IZVESTIYA MATHEMATICS, 2019, 83 (03) : 565 - 612