A finite element solution of an added mass formulation for coupled fluid-solid vibrations

被引:0
|
作者
Alfredo Bermúdez
Rodolfo Rodríguez
Duarte Santamarina
机构
[1] Departamento de Matemática Aplicada,
[2] Universidade de Santiago de Compostela,undefined
[3] 15706 Santiago de Compostela,undefined
[4] Spain,undefined
[5] Departamento de Ingeniería Matemática,undefined
[6] Universidad de Concepción,undefined
[7] Casilla 160-C,undefined
[8] Concepción,undefined
[9] Chile,undefined
来源
Numerische Mathematik | 2000年 / 87卷
关键词
Mathematics Subject Classification (1991): 65N30, 65N25, 73K70, 76B15;
D O I
暂无
中图分类号
学科分类号
摘要
A finite element method to approximate the vibration modes of a structure in contact with an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of an added mass formulation, which is one of the most usual procedures in engineering practice. Gravity waves on the free surface of the liquid are also considered in the model. Piecewise linear continuous elements are used to discretize the solid displacements, the variables to compute the added mass terms and the vertical displacement of the free surface, yielding a non conforming method for the spectral coupled problem. Error estimates are settled for approximate eigenfunctions and eigenfrequencies. Implementation issues are discussed and numerical experiments are reported. In particular the method is compared with other numerical scheme, based on a pure displacement formulation, which has been recently analyzed.
引用
收藏
页码:201 / 227
页数:26
相关论文
共 50 条
  • [31] A VARIATIONAL FINITE-ELEMENT METHOD FOR STATIONARY NONLINEAR FLUID-SOLID INTERACTION
    GHATTAS, O
    LI, XG
    JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 121 (02) : 347 - 356
  • [32] Mathematical model and nonlinear finite element equation for reservoir fluid-solid coupling
    Zhang, Guang-Ming
    Liu, He
    Zhang, Jin
    Wu, Heng-An
    Wang, Xiu-Xi
    Yantu Lixue/Rock and Soil Mechanics, 2010, 31 (05): : 1657 - 1662
  • [33] Efficacy of Coupled Solid-Fluid Formulation in Regularizing an Ill-Posed Finite Element Model
    Singh, Rahul
    Das, Arghya
    Sathiyamoorthy, Rajesh
    INDIAN GEOTECHNICAL JOURNAL, 2019, 49 (04) : 409 - 420
  • [34] FREE VIBRATIONS OF FLUID-SOLID STRUCTURES WITH STRONG COUPLING
    Voss, Heinrich
    Stammberger, Markus
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE 2010, VOL 4, 2010, : 25 - 34
  • [35] Numerical simulation of coupled fluid-solid problems
    Schäfer, M
    Teschauer, I
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (28) : 3645 - 3667
  • [36] Iterative solvers for coupled fluid-solid scattering
    Mandel, J
    Popa, MO
    APPLIED NUMERICAL MATHEMATICS, 2005, 54 (02) : 194 - 207
  • [37] FINITE-ELEMENT VIBRATION ANALYSIS OF FLUID-SOLID SYSTEMS WITHOUT SPURIOUS MODES
    BERMUDEZ, A
    DURAN, R
    MUSCHIETTI, MA
    RODRIGUEZ, R
    SOLOMIN, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (04) : 1280 - 1295
  • [38] Finite element analysis of deformation mechanism for porous materials under fluid-solid interaction
    Zhu, Q. J.
    He, Y. F.
    Yin, Y.
    MATERIALS RESEARCH INNOVATIONS, 2014, 18 : 22 - 27
  • [39] Analysis of finite element methods and domain decomposition algorithms for a fluid-solid interaction problem
    Feng, XB
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (04) : 1312 - 1336
  • [40] Numerical simulation of fluid-solid interaction using an immersed boundary finite element method
    Ilinca, F.
    Hetu, J-F
    COMPUTERS & FLUIDS, 2012, 59 : 31 - 43