A finite element solution of an added mass formulation for coupled fluid-solid vibrations

被引:0
|
作者
Alfredo Bermúdez
Rodolfo Rodríguez
Duarte Santamarina
机构
[1] Departamento de Matemática Aplicada,
[2] Universidade de Santiago de Compostela,undefined
[3] 15706 Santiago de Compostela,undefined
[4] Spain,undefined
[5] Departamento de Ingeniería Matemática,undefined
[6] Universidad de Concepción,undefined
[7] Casilla 160-C,undefined
[8] Concepción,undefined
[9] Chile,undefined
来源
Numerische Mathematik | 2000年 / 87卷
关键词
Mathematics Subject Classification (1991): 65N30, 65N25, 73K70, 76B15;
D O I
暂无
中图分类号
学科分类号
摘要
A finite element method to approximate the vibration modes of a structure in contact with an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of an added mass formulation, which is one of the most usual procedures in engineering practice. Gravity waves on the free surface of the liquid are also considered in the model. Piecewise linear continuous elements are used to discretize the solid displacements, the variables to compute the added mass terms and the vertical displacement of the free surface, yielding a non conforming method for the spectral coupled problem. Error estimates are settled for approximate eigenfunctions and eigenfrequencies. Implementation issues are discussed and numerical experiments are reported. In particular the method is compared with other numerical scheme, based on a pure displacement formulation, which has been recently analyzed.
引用
收藏
页码:201 / 227
页数:26
相关论文
共 50 条
  • [1] A Finite element solution of an added mass formulation for coupled fluid-solid vibrations
    Bermúdez, A
    Rodríguez, R
    Santamarina, D
    NUMERISCHE MATHEMATIK, 2000, 87 (02) : 201 - 227
  • [2] Added mass finite element formulation of a beam vibrating in a fluid
    Simha, H
    Klein, HW
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S227 - S228
  • [3] Finite element solution of the fluid-solid reaction equations with structural changes
    Ebrahimi, A. Afshar
    Ebrahim, H. Ale
    Hatam, M.
    Jamshidi, E.
    CHEMICAL ENGINEERING JOURNAL, 2009, 148 (2-3) : 533 - 538
  • [4] An hp finite element adaptive scheme to solve the Laplace model for fluid-solid vibrations
    Armentano, M. G.
    Padra, C.
    Rodriguez, R.
    Scheble, M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (1-4) : 178 - 188
  • [5] COUPLED FINITE AND BOUNDARY ELEMENT METHODS FOR FLUID-SOLID INTERACTION EIGENVALUE PROBLEMS
    Kimeswenger, A.
    Steinbach, O.
    Unger, G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2400 - 2414
  • [6] An efficient fluid-solid coupled finite element scheme for weapon fragmentation simulations
    Soto, O.
    Baum, J.
    Loehner, R.
    ENGINEERING FRACTURE MECHANICS, 2010, 77 (03) : 549 - 564
  • [7] A displacement-based finite element formulation for solving elastic wave problems in coupled fluid-solid media on a GPU
    Simillides, Yiannis
    Huthwaite, Peter
    Kalkowski, Michal K.
    Lowe, Michael J. S.
    COMPUTERS & STRUCTURES, 2024, 299
  • [8] A priori error estimates for a coupled finite element method and mixed finite element method for a fluid-solid interaction problem
    Feng, XB
    Xie, ZH
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (04) : 671 - 698
  • [9] A FINITE-ELEMENT FORMULATION FOR THE COUPLED THERMOVISCOELASTIC RESPONSE OF SOLID FLUID SYSTEMS
    LEVESQUE, D
    BERTRAND, L
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1990, 29 (05) : 953 - 968
  • [10] FINITE STRAIN FINITE ELEMENT FORMULATION OF COUPLED SOLID-FLUID MIXTURE FOR DYNAMIC PROBLEMS
    Charatpangoon, Bhuddarak
    Furukawa, Aiko
    Kiyono, Junji
    Tachibana, Shinya
    Takeyama, Tomohide
    Iizuka, Atsushi
    INTERNATIONAL JOURNAL OF GEOMATE, 2018, 15 (51): : 1 - 8