Lax–Hopf formula and Max-Plus properties of solutions to Hamilton–Jacobi equations

被引:0
|
作者
Jean-Pierre Aubin
机构
[1] VIMADES (Viabilité,
[2] Marchés,undefined
[3] Automatique et Décision),undefined
关键词
Lax–Hopf; Viability; Capture Basins; Inf-convolution; Fenchel transform; Lagrangian; Hamiltonian;
D O I
暂无
中图分类号
学科分类号
摘要
We state and prove a “Lax–Hopf formula” characterizing viable capture basins of targets investigated in viability theory and derive a “Max-Plus” morphism of capture basins with respect to the target. Capture basins are used to define “viability solutions” to Hamilton–Jacobi equations satisfying “trajectory conditions” (initial, boundary or Lagrangian conditions). The Max-Plus morphism property of Lax–Hopf formula implies the fact that the solution associated with inf-convolution of trajectory conditions is the inf-convolution of the solutions for each trajectory condition. For instance, Lipschitz regularization or decreasing envelopes of trajectory condition imply the Lipschitz regulation or decreasing envelopes of the solutions.
引用
收藏
页码:187 / 211
页数:24
相关论文
共 50 条
  • [21] Interval strong solutions of interval systems of max-plus linear equations
    Wang, Cailu
    Tao, Yuegang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 537 : 148 - 159
  • [22] Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients
    Adimurthi
    Mishra, Siddhartha
    Gowda, G. D. Veerappa
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 241 (01) : 1 - 31
  • [23] A REPRESENTATION FORMULA FOR VISCOSITY SOLUTIONS OF NONLOCAL HAMILTON--JACOBI EQUATIONS AND APPLICATIONS*
    Kagaya, Takashi
    Liu, Qing
    Mitake, Hiroyoshi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (05) : 5807 - 5839
  • [24] An application of the max-plus spectral theory to an ultradiscrete analogue of the Lax pair
    Sergeev, Sergei
    TROPICAL GEOMETRY AND INTEGRABLE SYSTEMS, 2012, 580 : 117 - 133
  • [25] Max-plus linear partial differential equations
    Fleming, WH
    RESEARCH DIRECTIONS IN DISTRIBUTED PARAMETER SYSTEMS, 2003, : 123 - 137
  • [26] Interval max-plus systems of linear equations
    Myskova, Helena
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (08) : 1992 - 2000
  • [27] Weak Solvability of Max-plus Matrix Equations
    Myskova, Helena
    39TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS (MME 2021), 2021, : 337 - 342
  • [28] Singularities of Solutions of Hamilton–Jacobi Equations
    Piermarco Cannarsa
    Wei Cheng
    Milan Journal of Mathematics, 2021, 89 : 187 - 215
  • [29] Solvability of interval max-plus matrix equations
    Drazenska, Emilia
    MATHEMATICAL METHODS IN ECONOMICS (MME 2017), 2017, : 131 - 136
  • [30] SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS
    CRANDALL, MG
    EVANS, LC
    LIONS, PL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) : 487 - 502