An evaluation of transfer learning models in EEG-based authentication

被引:7
|
作者
Yap, Hui Yen [1 ,2 ]
Choo, Yun-Huoy [2 ]
Mohd Yusoh, Zeratul Izzah [2 ]
Khoh, Wee How [1 ]
机构
[1] Multimedia Univ MMU, Fac Informat Sci & Technol, Melaka, Malaysia
[2] Univ Teknikal Malaysia Melaka UTeM, Fac Informat & Commun Technol, Melaka, Malaysia
关键词
Authentication; Brainwaves; Transfer learning; Deep learning; Electroencephalography; EEG; NEURAL-NETWORKS; BRAIN;
D O I
10.1186/s40708-023-00198-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalogram(EEG)-based authentication has received increasing attention from researchers as they believe it could serve as an alternative to more conventional personal authentication methods. Unfortunately, EEG signals are non-stationary and could be easily contaminated by noise and artifacts. Therefore, further processing of data analysis is needed to retrieve useful information. Various machine learning approaches have been proposed and implemented in the EEG-based domain, with deep learning being the most current trend. However, retaining the performance of a deep learning model requires substantial computational effort and a vast amount of data, especially when the models go deeper to generate consistent results. Deep learning models trained with small data sets from scratch may experience an overfitting issue. Transfer learning becomes an alternative solution. It is a technique to recognize and apply the knowledge and skills learned from the previous tasks to a new domain with limited training data. This study attempts to explore the applicability of transferring various pre-trained models' knowledge to the EEG-based authentication domain. A self-collected database that consists of 30 subjects was utilized in the analysis. The database enrolment is divided into two sessions, with each session producing two sets of EEG recording data. The frequency spectrums of the preprocessed EEG signals are extracted and fed into the pre-trained models as the input data. Three experimental tests are carried out and the best performance is reported with accuracy in the range of 99.1-99.9%. The acquired results demonstrate the efficiency of transfer learning in authenticating an individual in this domain.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Exploring EEG-based Biometrics for User Identification and Authentication
    Gui, Qiong
    Jin, Zhanpeng
    Xu, Wenyao
    2014 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2014,
  • [22] EEG-based Person Authentication using Face Stimuli
    Yeom, Seul-Ki
    Suk, Heung-Il
    Lee, Seong-Whan
    2013 IEEE INTERNATIONAL WINTER WORKSHOP ON BRAIN-COMPUTER INTERFACE (BCI), 2013, : 58 - 61
  • [23] Multi-factor EEG-based User Authentication
    Tien Pham
    Ma, Wanli
    Dat Tran
    Phuoc Nguyen
    Dinh Phung
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 4029 - 4034
  • [24] Improving EEG-Based Emotion Classification Using Conditional Transfer Learning
    Lin, Yuan-Pin
    Jung, Tzyy-Ping
    FRONTIERS IN HUMAN NEUROSCIENCE, 2017, 11
  • [25] Correction to: Innovative deep learning models for EEG-based vigilance detection
    Souhir Khessiba
    Ahmed Ghazi Blaiech
    Khaled Ben Khalifa
    Asma Ben Abdallah
    Mohamed Hédi Bedoui
    Neural Computing and Applications, 2022, 34 : 819 - 819
  • [26] Hyperparameter Optimization of Deep Learning Models for EEG-Based Vigilance Detection
    Khessiba, Souhir
    Blaiech, Ahmed Ghazi
    Manzanera, Antoine
    Ben Khalifa, Khaled
    Ben Abdallah, Asma
    Bedoui, Mohamed Hedi
    ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2022, 2022, 1653 : 200 - 210
  • [27] Deep learning models as learners for EEG-based functional brain networks
    Yang, Yuxuan
    Li, Yanli
    JOURNAL OF NEURAL ENGINEERING, 2025, 22 (02)
  • [28] Multitask Learning for EEG-Based Biometrics
    Sun, Shiliang
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 2743 - 2746
  • [29] Investigating the possibility of applying EEG lossy compression to EEG-based user authentication
    Binh Nguyen
    Dang Nguyen
    Ma, Wanli
    Dat Tran
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 79 - 85
  • [30] EEG-based Evaluation of Mental Fatigue Using Machine Learning Algorithms
    Liu, Yisi
    Lan, Zirui
    Khoo, Han Hua Glenn
    Li, King Ho Holden
    Sourina, Olga
    Mueller-Wittig, Wolfgang
    2018 INTERNATIONAL CONFERENCE ON CYBERWORLDS (CW), 2018, : 276 - 279