No Zero Energy States for the Supersymmetric x2y2 Potential

被引:0
|
作者
G. M. Graf
D. Hasler
J. Hoppe
机构
[1] ETH-Hönggerberg,Theoretische Physik
[2] QFT,undefined
[3] HU-Berlin,undefined
来源
关键词
supersymmetric matrix models; zero modes;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the positive supersymmetric matrix-valued differential operator H = px2 + py2 + x2y2 + xσ3 + yσ1 has no zero modes, i.e., Hψ = 0 implies ψ = 0. The result depends on a virial type argument for the corresponding supercharge. The model may be regarded as a simple relative of dimensional reductions of supersymmetric Yang–Mills theories.
引用
收藏
页码:191 / 196
页数:5
相关论文
共 50 条
  • [1] No zero energy states for the supersymmetric x2y2 potential
    Graf, GM
    Hasler, D
    Hoppe, J
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2002, 60 (02) : 191 - 196
  • [2] EXISTENCE OF STABLE ORBITS IN THE X2Y2 POTENTIAL
    DAHLQVIST, P
    RUSSBERG, G
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (23) : 2837 - 2838
  • [3] SEARCH FOR REGULAR ORBITS IN THE X2Y2 POTENTIAL PROBLEM
    NIP, MLA
    TUSZYNSKI, JA
    OTWINOWSKI, M
    DIXON, JM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (21): : 5553 - 5562
  • [4] Eigenvalues and eigenfunctions of the anharmonic oscillator V(x, y) = x2y2
    Fernandez, Francisco M.
    Garcia, Javier
    [J]. CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2014, 12 (07): : 499 - 502
  • [5] EXISTENCE OF STABLE PERIODIC-ORBITS IN THE X2Y2 POTENTIAL - A SEMICLASSICAL APPROACH
    BISWAS, D
    AZAM, M
    LAWANDE, QV
    LAWANDE, SV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (07): : L297 - L301
  • [6] CORRELATION BETWEEN ENERGY-LEVELS OF LINEAR AND BENT X2Y2 MOLECULES
    YAMADA, K
    NAKAGAWA, T
    KUCHITSU, K
    [J]. JOURNAL OF MOLECULAR SPECTROSCOPY, 1974, 51 (03) : 399 - 421
  • [7] About nilalgebras satisfying (xy)2 = x2y2
    Behn, A.
    Correa, Ivan
    Gutierrez Fernandez, Juan C.
    Garcia, C., I
    [J]. COMMUNICATIONS IN ALGEBRA, 2021, 49 (09) : 3708 - 3719
  • [8] Rational points on x3 + x2y2 + y3 = k
    Lang, Xiaoan
    Rouse, Jeremy
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (07) : 1767 - 1778
  • [9] The equation x2y2 = g in partially commutative groups
    Shestakov, SL
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2006, 47 (02) : 383 - 390
  • [10] The equation x2y2 = g in partially commutative groups
    S. L. Shestakov
    [J]. Siberian Mathematical Journal, 2006, 47 : 383 - 390