EXISTENCE OF STABLE PERIODIC-ORBITS IN THE X2Y2 POTENTIAL - A SEMICLASSICAL APPROACH

被引:10
|
作者
BISWAS, D
AZAM, M
LAWANDE, QV
LAWANDE, SV
机构
[1] Div. of Theor. Phys., Bhabha At. Res. Centre, Bombay
来源
关键词
D O I
10.1088/0305-4470/25/7/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the semiclassical periodic orbit theory to identify the recently discovered one-parameter family of stable periodic orbits in the x2y2 potential occupying an area of 0.005% on the surface of section. We also indicate the presence of another stable family of periodic orbits of higher length. The sensitivity of the method provides hope for ruling out ergodicity in other systems.
引用
收藏
页码:L297 / L301
页数:5
相关论文
共 50 条
  • [1] EXISTENCE OF STABLE ORBITS IN THE X2Y2 POTENTIAL
    DAHLQVIST, P
    RUSSBERG, G
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (23) : 2837 - 2838
  • [2] SEARCH FOR REGULAR ORBITS IN THE X2Y2 POTENTIAL PROBLEM
    NIP, MLA
    TUSZYNSKI, JA
    OTWINOWSKI, M
    DIXON, JM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (21): : 5553 - 5562
  • [3] STABILITY ANALYSIS OF X=PLUS-OR-MINUS-Y PERIODIC-ORBITS IN A 1/2(Q-CHI-Y)2 POTENTIAL
    JAROENSUTASINEE, K
    ROWLANDS, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (04): : 1163 - 1178
  • [4] No Zero Energy States for the Supersymmetric x2y2 Potential
    G. M. Graf
    D. Hasler
    J. Hoppe
    [J]. Letters in Mathematical Physics, 2002, 60 : 191 - 196
  • [5] PERIODIC-ORBITS IN A 3-DIMENSIONAL POTENTIAL .2. BIFURCATIONS
    CARTIGNY, P
    DESOLNEUX, N
    [J]. CELESTIAL MECHANICS, 1984, 33 (03): : 217 - 227
  • [6] No zero energy states for the supersymmetric x2y2 potential
    Graf, GM
    Hasler, D
    Hoppe, J
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2002, 60 (02) : 191 - 196
  • [7] ON PERIODIC-ORBITS OF 2 SPHEROIDAL RIGID BODIES
    ELSHABOURY, S
    ELKILANY, S
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1983, 14 (06): : 735 - 740
  • [8] THE BIFURCATION OF HOMOCLINIC AND PERIODIC-ORBITS FROM 2 HETEROCLINIC ORBITS
    CHOW, SN
    DENG, B
    TERMAN, D
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (01) : 179 - 204
  • [9] ANALYTICAL CONDITION FOR THE EXISTENCE OF 2-PARAMETER FAMILY OF PERIODIC-ORBITS IN THE AUTONOMOUS SYSTEM
    AWREJCEWICZ, J
    SOMEYA, T
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (03) : 781 - 784
  • [10] PERIODIC-ORBITS IN A TRIAXIAL GALAXY .2.
    ROBE, H
    [J]. ASTRONOMY & ASTROPHYSICS, 1986, 162 (1-2) : 45 - 53