Convolutional neural network based hurricane damage detection using satellite images

被引:0
|
作者
Swapandeep Kaur
Sheifali Gupta
Swati Singh
Deepika Koundal
Atef Zaguia
机构
[1] Chitkara University Institute of Engineering and Technology,Department of Electronics and Communication Engineering
[2] Chitkara University,School of Computer Science
[3] University Institute of Technology,Department of Computer Science, College of Computers and Information Technology
[4] Himachal Pradesh University,undefined
[5] University of Petroleum and Energy Studies,undefined
[6] Taif University,undefined
来源
Soft Computing | 2022年 / 26卷
关键词
Natural disaster; Damage; Hurricane; Remote sensing; Satellite imagery; Computer vision; Deep learning; Convolutional neural network;
D O I
暂无
中图分类号
学科分类号
摘要
Hurricanes are tropical storms that cause immense damage to human life and property. Rapid assessment of damage caused by hurricanes is extremely important for the first responders. But this process is usually slow, expensive, labor intensive and prone to errors. The advancements in remote sensing and computer vision help in observing Earth at a different scale. In this paper, a new Convolutional Neural Network model has been designed with the help of satellite images captured from the areas affected by hurricanes. The model will be able to assess the damage by detecting damaged and undamaged buildings based upon which the relief aid can be provided to the affected people on an immediate basis. The model is composed of five convolutional layers, five pooling layers, one flattening layer, one dropout layer and two dense layers. Hurricane Harvey dataset consisting of 23,000 images of size 128 × 128 pixels has been used in this paper. The proposed model is simulated on 5750 test images at a learning rate of 0.00001 and 30 epochs with the Adam optimizer obtaining an accuracy of 0.95 and precision of 0.97. The proposed model will help the emergency responders to determine whether there has been damage or not due to the hurricane and also help those to provide relief aid to the affected people.
引用
收藏
页码:7831 / 7845
页数:14
相关论文
共 50 条
  • [21] Bridge Damage Identification Based on Encoded Images and Convolutional Neural Network
    Wang, Xiaoguang
    Li, Wanhua
    Ma, Ming
    Yang, Fan
    Song, Shuai
    Buildings, 2024, 14 (10)
  • [22] Detection of Diabetic Retinopathy Based on a Convolutional Neural Network Using Retinal Fundus Images
    Garcia, Gabriel
    Gallardo, Jhair
    Mauricio, Antoni
    Lopez, Jorge
    Del Carpio, Christian
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 635 - 642
  • [23] Fault detection in satellite power system using convolutional neural network
    M Ganesan
    R Lavanya
    M Nirmala Devi
    Telecommunication Systems, 2021, 76 : 505 - 511
  • [24] Fault detection in satellite power system using convolutional neural network
    Ganesan, M.
    Lavanya, R.
    Nirmala Devi, M.
    TELECOMMUNICATION SYSTEMS, 2021, 76 (04) : 505 - 511
  • [25] Maritime Ship Detection using Convolutional Neural Networks from Satellite Images
    Alghazo, Jaafar
    Bashar, Abul
    Latif, Ghazanfar
    Zikria, Mohammed
    Proceedings - 2021 IEEE 10th International Conference on Communication Systems and Network Technologies, CSNT 2021, 2021, : 432 - 437
  • [26] Convolutional Neural Network for Saliency Detection in Images
    Misaghi, Hooman
    Moghadam, Reza Askari
    Madani, Kurosh
    2018 6TH IRANIAN JOINT CONGRESS ON FUZZY AND INTELLIGENT SYSTEMS (CFIS), 2018, : 17 - 19
  • [27] Airport Detection on Optical Satellite Images Using Deep Convolutional Neural Networks
    Zhang, Peng
    Niu, Xin
    Dou, Yong
    Xia, Fei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (08) : 1183 - 1187
  • [28] Geospatial Object Detection in High Resolution Satellite Images Based on Multi-Scale Convolutional Neural Network
    Guo, Wei
    Yang, Wen
    Zhang, Haijian
    Hua, Guang
    REMOTE SENSING, 2018, 10 (01)
  • [29] Acral melanoma detection using a convolutional neural network for dermoscopy images
    Yu, Chanki
    Yang, Sejung
    Kim, Wonoh
    Jung, Jinwoong
    Chung, Kee-Yang
    Lee, Sang Wook
    Oh, Byungho
    PLOS ONE, 2018, 13 (03):
  • [30] Melanoma Detection by Analysis of Clinical Images Using Convolutional Neural Network
    Nasr-Esfahani, E.
    Samavi, S.
    Karimi, N.
    Soroushmehr, S. M. R.
    Jafari, M. H.
    Ward, K.
    Najarian, K.
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 1373 - 1376