Raman study of cations’ distribution in ZnxMg1−xFe2O4 nanoparticles

被引:0
|
作者
S. W. da Silva
F. Nakagomi
M. S. Silva
A. Franco
V. K. Garg
A. C. Oliveira
P. C. Morais
机构
[1] Universidade de Brasília,Instituto de Física
[2] Universidade Federal de Goiás,Instituto de Física
来源
关键词
Raman spectroscopy; Cubic ferrite; Magnetic nanoparticles; Cation’ distribution; Mössbauer spectroscopy;
D O I
暂无
中图分类号
学科分类号
摘要
In a complementary way, Raman and Mössbauer spectroscopy were successfully employed to assess the cations’ distribution among the tetrahedral (A-site) and octahedral (B-site) sites of nonosized ZnxMg1−xFe2O4 (0 ≤ x ≤ 1) cubic ferrite structure, synthesized by combustion reaction method. Nanoparticles with little change in size distributions, in the 40 nm (x = 0.0) up to 42 nm (x = 1.0) were obtained. Mössbauer data indicated that as the Zn-content (x) increases in the range 0 ≤ x ≤ 1, the Fe3+ ion monotonically increases (decreases) the A-site (B-site) occupancy up to nearly equal values at the highest end x value. Analysis of the Raman data, however, confirms that the three highest energy modes around 650, 668 and 710 cm−1 are assigned to Zn–O (B-site), Fe–O (A-site) and Mg–O (A-site) vibrations, respectively. Additionally, in agreement with the Mössbauer data, the Raman data show that as the Zn-content (x) increases in the range 0 ≤ x ≤ 1, the occupancy of A-sites by Mg2+ ions monotonically reduces with concomitant increase of A- and B-sites occupancy by Fe3+ and Zn2+ ions, respectively. Indeed, combination of the two sets of spectroscopic data (Raman and Mössbauer) provides an effective protocol for assessing the cations’ distribution within the crystal structure of nanosized quaternary cubic ferrite samples running for instance from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left[ {{\text{Fe}}_{0.42}^{3 + } {\text{Mg}}_{0.58}^{2 + } } \right]^{A} \left[ {{\text{Zn}}_{0.20}^{2 + } {\text{Mg}}_{0.22}^{2 + } {\text{Fe}}_{1.58}^{3 + } } \right]^{B} O_{4}^{2 - } $$\end{document} at x = 0.2 up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left[ {{\text{Fe}}_{1.0}^{3 + } } \right]^{A} \left[ {{\text{Zn}}_{0.60}^{2 + } {\text{Mg}}_{0.40}^{2 + } {\text{Fe}}_{1.0}^{3 + } } \right]^{B} {\text{O}}_{4}^{2 - } $$\end{document} at x = 0.6.
引用
收藏
相关论文
共 50 条
  • [21] Investigation of the functional properties of MgxNi1−xFe2O4 ceramics
    Z. V. Mocanu
    M. Airimioaei
    C. E. Ciomaga
    L. Curecheriu
    F. Tudorache
    S. Tascu
    A. R. Iordan
    N. M. Palamaru
    L. Mitoseriu
    Journal of Materials Science, 2014, 49 : 3276 - 3286
  • [22] Effect of composition on the FMR properties of NixZn1–xFe2O4
    Vyzulin S.A.
    Buz’ko V.Y.
    Kalikintseva D.A.
    Miroshnichenko E.L.
    Kalikintseva, D.A. (delson17@gmail.com), 2018, Allerton Press Incorporation (82) : 105 - 109
  • [23] ELECTRICAL RESISTIVITY OF CUXZN1 - XFE2O4 SYSTEM.
    SAWANT, S.R.
    PATIL, R.N.
    1982, V 20 (N 5): : 353 - 355
  • [24] XRD, Magnetic and Mössbauer Spectral Studies of AgxNi1−xFe2O4 Ferrite Nanoparticles
    J. Z. Msomi
    T. Moyo
    H. M. I. Abdallah
    A. M. Strydom
    D. Britz
    Journal of Superconductivity and Novel Magnetism, 2011, 24 : 711 - 715
  • [25] Enhanced photocatalytic activity of CuxNi1−xFe2O4 -rGO composite
    Philips O. Agboola
    Imran Shakir
    Journal of the Korean Ceramic Society, 2022, 59 : 686 - 697
  • [26] Preparation and property of magnetic photocatalyst BiOCl/MnxZn1−xFe2O4
    Shan Feng
    Longjun Xu
    Chenglun Liu
    Haigang Du
    Taiping Xie
    Qianqian Zhu
    Journal of Nanoparticle Research, 2017, 19
  • [27] Structural, magnetic and electrochemical studies on ZnxMg1-xFe2O4 nanoparticles prepared via solution combustion method
    Martinson, Kirill D.
    Murashkin, Alexander A.
    Lobinsky, Artem A.
    Maltsev, Danil D.
    Qi, Kezhen
    Yu, Jiaguo
    Almjasheva, Oksana V.
    Popkov, Vadim I.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2024, 15 (02): : 233 - 239
  • [28] High temperature magnetic properties of Co1-xMg xFe2O4 nanoparticles prepared by forced hydrolysis method
    Franco Jr., A. (franco@if.ufg.br), 1600, American Institute of Physics Inc. (111):
  • [29] Ab initio study on manganese doped cadmium ferrite (Cd1-xMn xFe2O4)
    School of Physics, Nankai University, Tianjin 300071, China
    不详
    不详
    不详
    不详
    IEEE Trans Magn, 2 PART 1 (324-332):
  • [30] A Green approach: synthesis, characterization and opto-magnetic properties of MgxMn1−xFe2O4 spinel nanoparticles
    K. Kombaiah
    J. Judith Vijaya
    L. John Kennedy
    M. Bououdina
    K. Kaviyarasu
    R. Jothi Ramalingam
    Hamad A. Al-Lohedan
    Murugan A. Munusamy
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 10321 - 10329