Research on visual question answering based on dynamic memory network model of multiple attention mechanisms

被引:0
|
作者
Yalin Miao
Shuyun He
WenFang Cheng
Guodong Li
Meng Tong
机构
[1] Xi’an University of Technology,Department of Information Science
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Since the existing visual question answering model lacks long-term memory modules for answering complex questions, it is easy to cause the loss of effective information. In order to further improve the accuracy of the visual question answering model, this paper applies the multiple attention mechanism combining channel attention and spatial attention to memory networks for the first time and proposes a dynamic memory network model (DMN-MA) based on the multiple attention mechanism. The model uses the multiple attention mechanism in the situational memory module to obtain the most relevant visual vectors for answering questions based on continuous memory updating, storage and iterative inference of the questions, and effectively uses contextual information for answer inference. The experimental results show that the accuracy of the model in this paper reaches 64.57% and 67.18% on the large-scale public datasets COCO-QA and VQA2.0, respectively.
引用
收藏
相关论文
共 50 条
  • [21] Latent Attention Network With Position Perception for Visual Question Answering
    Zhang, Jing
    Liu, Xiaoqiang
    Wang, Zhe
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 11
  • [22] Deep Modular Bilinear Attention Network for Visual Question Answering
    Yan, Feng
    Silamu, Wushouer
    Li, Yanbing
    SENSORS, 2022, 22 (03)
  • [23] Word-to-region attention network for visual question answering
    Peng, Liang
    Yang, Yang
    Bin, Yi
    Xie, Ning
    Shen, Fumin
    Ji, Yanli
    Xu, Xing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (03) : 3843 - 3858
  • [24] Progressive Attention Memory Network for Movie Story Question Answering
    Kim, Junyeong
    Ma, Minuk
    Kim, Kyungsu
    Kim, Sungjin
    Yoo, Chang D.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 8329 - 8338
  • [25] Dual Attention and Question Categorization-Based Visual Question Answering
    Mishra A.
    Anand A.
    Guha P.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (01): : 81 - 91
  • [26] Visual Question Answering using Hierarchical Dynamic Memory Networks
    Shang, Jiayu
    Li, Shiren
    Duan, Zhikui
    Huang, Junwei
    NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [27] An Improved Attention for Visual Question Answering
    Rahman, Tanzila
    Chou, Shih-Han
    Sigal, Leonid
    Carenini, Giuseppe
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1653 - 1662
  • [28] QAlayout: Question Answering Layout Based on Multimodal Attention for Visual Question Answering on Corporate Document
    Mahamoud, Ibrahim Souleiman
    Coustaty, Mickael
    Joseph, Aurelie
    d'Andecy, Vincent Poulain
    Ogier, Jean-Marc
    DOCUMENT ANALYSIS SYSTEMS, DAS 2022, 2022, 13237 : 659 - 673
  • [29] Differential Attention for Visual Question Answering
    Patro, Badri
    Namboodiri, Vinay P.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7680 - 7688
  • [30] Multimodal Attention for Visual Question Answering
    Kodra, Lorena
    Mece, Elinda Kajo
    INTELLIGENT COMPUTING, VOL 1, 2019, 858 : 783 - 792