Rate of Convergence for Discretization of Integrals with Respect to Fractional Brownian Motion

被引:0
|
作者
Ehsan Azmoodeh
Lauri Viitasaari
机构
[1] University of Luxembourg,de la Technologie et de la Communication, Faculté des Sciences
[2] Aalto University School of Science,Department of Mathematics and Systems Analysis
来源
关键词
Fractional Brownian motion; Stochastic integral; Discretization; Rate of convergence; 60G22; 60H05; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, a uniform discretization of stochastic integrals ∫01f−′(Bt)dBt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _{0}^{1} f^{\prime }_-(B_t)\mathrm d B_t$$\end{document}, where B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document} denotes the fractional Brownian motion with Hurst parameter H∈(12,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \in (\frac{1}{2},1)$$\end{document}, is considered for a large class of convex functions f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}. In Azmoodeh et al. (Stat Decis 27:129–143, 2010), for any convex function f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}, the almost sure convergence of uniform discretization to such stochastic integral is proved. Here, we prove Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^r$$\end{document}-convergence of uniform discretization to stochastic integral. In addition, we obtain a rate of convergence. It turns out that the rate of convergence can be brought arbitrarily close to H−12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H - \frac{1}{2}$$\end{document}.
引用
收藏
页码:396 / 422
页数:26
相关论文
共 50 条
  • [41] Various types of stochastic integrals with respect to fractional Brownian sheet and their applications
    Kim, Yoon Tae
    Jeon, Jong Woo
    Park, Hyun Suk
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) : 1382 - 1398
  • [42] Stochastic integrals driven by fractional Brownian motion and arbitrage: a tale of two integrals
    Chan, Ngai Hang
    Ng, Chi Tim
    QUANTITATIVE FINANCE, 2009, 9 (05) : 519 - 525
  • [43] Discrete approximation of stochastic integrals with respect to fractional Brownian motion of Hurst index H > 1/2
    Biagini, Francesca
    Campanino, Massimo
    Fuschini, Serena
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2008, 80 (05) : 407 - 426
  • [44] Besov regularity of stochastic integrals with respect to the fractional Brownian motion with parameter H>1/2
    Nualart, D
    Ouknine, Y
    JOURNAL OF THEORETICAL PROBABILITY, 2003, 16 (02) : 451 - 470
  • [45] Weak convergence in Besov spaces to fractional Brownian motion
    Boufoussi, B
    Lakhel, EH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (01): : 39 - 44
  • [46] Evaluation of integrals with fractional Brownian motion for different Hurst indices
    Gao, Fei
    Liu, Shuaiqiang
    Oosterlee, Cornelis W.
    Temme, Nico M.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (04) : 847 - 866
  • [47] On the rate of convergence to equilibrium for reflected Brownian motion
    Peter W. Glynn
    Rob J. Wang
    Queueing Systems, 2018, 89 : 165 - 197
  • [48] On the rate of convergence to equilibrium for reflected Brownian motion
    Glynn, Peter W.
    Wang, Rob J.
    QUEUEING SYSTEMS, 2018, 89 (1-2) : 165 - 197
  • [49] Integration with respect to the non-commutative fractional Brownian motion
    Deya, Aurelien
    Schott, Rene
    BERNOULLI, 2019, 25 (03) : 2137 - 2162
  • [50] Discretization of Stationary Solutions of Stochastic Systems Driven by Fractional Brownian Motion
    Garrido-Atienza, Maria J.
    Kloeden, Peter E.
    Neuenkirch, Andreas
    APPLIED MATHEMATICS AND OPTIMIZATION, 2009, 60 (02): : 151 - 172