Characterization of trans-splicing in Euglenoids

被引:0
|
作者
Christian Frantz
Chantal Ebel
François Paulus
Patrice Imbault
机构
[1] Institut de Biologie Moléculaire des Plantes du CNRS,
[2] Université Louis Pasteur,undefined
[3] 12 rue du Général Zimmer,undefined
[4] 67084 cedex Strasbourg,undefined
[5] France e-mail: Patrice.Imbault@ibmp-ulp.u-strasbg.fr Fax: +33-3-88-61 4442,undefined
来源
Current Genetics | 2000年 / 37卷
关键词
Key words Euglenoid; Trans-splicing; Spliced leader-sequence RNA; Euglena gracilis;
D O I
暂无
中图分类号
学科分类号
摘要
We have looked for trans-splicing of nuclear mRNAs in several Euglenoid species. In Cyclidiopsis acus, Phacus curvicauda, Rhabdomonas costata and Menoidium pellucidum we showed that several pre-mRNAs chosen at random are matured by a trans-splicing process: we identified SL-RNA genes whose 5′ ends (SLs for spliced leader-sequences) were transferred to the 5′ extremities of mRNAs. The SL-RNA genes are located on repeated DNA fragments which also encode 5S rRNA in P. curvicauda and C. acus. The potential secondary structures of SL-RNAs are compared to those previously characterized in two other Euglenoids: Euglena gracilis and Entosiphon sulcatum. In another Euglenoid species, Distigma proteus, since none of the mRNAs examined were trans-spliced, it is possible that trans-splicing does not occur. Phylogeny based on 5S rRNA sequences suggests that the species which have, or have had, chloroplasts (E. gracilis, P. curvicauda, C. acus) diverged early from the others.
引用
收藏
页码:349 / 355
页数:6
相关论文
共 50 条
  • [11] Trans-splicing approach for dysferlinopathies
    Monjaret, Francois
    Gallardo, Eduard
    Charton, Karine
    Richard, Isabelle
    [J]. HUMAN GENE THERAPY, 2011, 22 (06) : A22 - A22
  • [12] Therapeutic applications of trans-splicing
    Hong, Elizabeth M.
    Ingemarsdotter, Carin K.
    Lever, Andrew M. L.
    [J]. BRITISH MEDICAL BULLETIN, 2020, 136 (01) : 4 - 20
  • [13] Characterization of trans-spliced chimeric RNAs: insights into the mechanism of trans-splicing
    Yokomori, Rui
    Kusakabe, Takehiro G.
    Nakai, Kenta
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2024, 6 (02)
  • [14] TRANS-SPLICING IN TRYPANOSOMES - ARCHAISM OR ADAPTATION
    LAIRD, PW
    [J]. TRENDS IN GENETICS, 1989, 5 (07) : 204 - 208
  • [15] In vitro trans-splicing in Saccharomyces cerevisiae
    Ghetti, A.
    Abelson, J. N.
    [J]. Proceedings of the National Academy of Sciences of the United States of America, 92 (25):
  • [16] A natural example of protein trans-splicing
    Perler, FB
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (06) : 209 - 211
  • [17] A computational investigation of kinetoplastid trans-splicing
    Shuba Gopal
    Saria Awadalla
    Terry Gaasterland
    George AM Cross
    [J]. Genome Biology, 6
  • [18] Global analysis of trans-splicing in Drosophila
    McManus, C. Joel
    Duff, Michael O.
    Eipper-Mains, Jodi
    Graveley, Brenton R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (29) : 12975 - 12979
  • [19] TRANS-SPLICING ELEMENTS IN PERKINSUS MARINUS
    Pitula, Joseph
    [J]. JOURNAL OF SHELLFISH RESEARCH, 2012, 31 (01): : 332 - 333
  • [20] Imaging trans-splicing events in cells and living animals using the SMaRT™ (spliceosome mediated RNA trans-splicing) strategy
    Bhaumik, S
    Puttaraju, M
    Mitchell, LG
    Gambhir, SS
    [J]. MOLECULAR THERAPY, 2003, 7 (05) : S138 - S139