Bound States of Spherically Symmetric PotentialsHeat Capacity Calculations

被引:0
|
作者
Chandan Kumar
机构
[1] Indian Institute of Science Education and Research (IISER) Mohali,Department of Physical Sciences
来源
Resonance | 2020年 / 25卷
关键词
Schrödinger equation; degeneracy; quantum models;
D O I
暂无
中图分类号
学科分类号
摘要
We solve the time-independent Schrödinger equation for spherically symmetric potentials. First, we consider simple cases of a particle on a ring and a particle on a sphere to illustrate the degeneracy arising due to symmetry. We then consider three different spherically symmetric potentials: (i) spherical well potential, (ii) isotropic three-dimensional harmonic oscillator, and (iii) spherically confined isotropic three-dimensional harmonic oscillator. Our discussion mainly focuses on the energy levels of the bound states and the associated degeneracies. Finally, we calculate the heat capacity of endohedral fullerenes using two simple models—particle in a spherical box and confined harmonic oscillator.
引用
收藏
页码:1491 / 1506
页数:15
相关论文
共 50 条
  • [41] On noncommutative spherically symmetric spaces
    Maja Burić
    John Madore
    The European Physical Journal C, 2014, 74
  • [42] A survey of spherically symmetric spacetimes
    Parry, Alan R.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2014, 4 (04) : 333 - 375
  • [43] Viscosity in spherically symmetric accretion
    Ray, AK
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 344 (04) : 1085 - 1090
  • [44] A charged spherically symmetric solution
    K. Moodley
    S. D. Maharaj
    K. S. Govinder
    Pramana, 2003, 61 : 493 - 499
  • [45] Spherically symmetric random permutations
    Gnedin, Alexander
    Gorin, Vadim
    RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (02) : 342 - 355
  • [46] Spherically symmetric elasticity in Relativity
    Carot, J.
    Brito, I.
    Vaz, E. G. L. R.
    SPANISH RELATIVITY MEETING (ERE 2009), 2010, 229
  • [47] Propagators in spherically symmetric backgrounds
    Bessa, A.
    de Carvalho, C. A. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31): : 9891 - 9901
  • [48] No cutoff in Spherically symmetric trees
    Chiclana, Rafael
    Peres, Yuval
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [49] Bondi on spherically symmetric accretion
    Armitage, Philip J.
    ASTRONOMY & GEOPHYSICS, 2020, 61 (02) : 40 - 42
  • [50] Holographic spherically symmetric metrics
    Petri, Michael
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2007, 16 (06) : 1603 - 1641