A decay estimate for the Fourier transform of certain singular measures in ℝ4 and applications

被引:0
|
作者
T. Godoy
P. Rocha
机构
[1] Ciudad Universitaria,FaMAF, Universidad Nacional de Córdoba
关键词
singular measure; Fourier transform; restriction theorem; convolution operator; 42B20; 42B10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider, for a class of functions φ: ℝ2 {0} → ℝ2 satisfying a nonisotropic homogeneity condition, the Fourier transform û of the Borel measure on ℝ4 defined by μ(E)=∫UχE(x,φ(x))dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \left(E \right) = \int_U {{\chi E}\left({x,\varphi \left(x \right)} \right)} \,dx$$\end{document} where E is a Borel set of ℝ4 and U={(tα1,tα2s):c<s<d,0<t<1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U = \left\{{\left({{t^{{\alpha _1}}},{t^{{\alpha _2}}}s} \right):c < s < d,\,\,0 < t < 1} \right\}$$\end{document}. The aim of this article is to give a decay estimate for û for the case where the set of nonelliptic points of φ is a curve in U¯\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline U \backslash \left\{{\bf{0}} \right\}$$\end{document}. From this estimate we obtain a restriction theorem for the usual Fourier transform to the graph of φ∣U: U → ℝ2. We also give Lp-improving properties for the convolution operator Tμf = μ * f.
引用
收藏
页码:443 / 466
页数:23
相关论文
共 50 条
  • [21] A Pointwise Estimate for the Fourier Transform and Maxima of a Function
    Berndt, Ryan
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (04): : 689 - 696
  • [22] Improved fourier transform to estimate frequency responses
    Yu Jin Cheon
    Chun Ho Jeon
    Jietae Lee
    Su Whan Sung
    Korean Journal of Chemical Engineering, 2009, 26 : 925 - 929
  • [23] Quantum Fourier transform to estimate drive cycles
    Dixit, Vinayak
    Jian, Sisi
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [24] FOURIER TRANSFORM AND ITS APPLICATIONS
    PIPES, LA
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1965, 280 (05): : 453 - &
  • [25] APPLICATIONS OF FAST FOURIER TRANSFORM
    STOCKHAM, T
    IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1969, AU17 (02): : 74 - &
  • [26] Fourier Transform on Groups and Applications
    Mensah, Yaogan
    DATA-DRIVEN MODELING FOR SUSTAINABLE ENGINEERING, ICEASSM 2017, 2020, 72 : 21 - 28
  • [27] Fourier Series for Singular Measures in Higher Dimensions
    Berner, Chad
    Herr, John E.
    Jorgensen, Palle E. T.
    Weber, Eric S.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2025, 31 (01)
  • [28] Decay of the Fourier transform of surfaces with vanishing curvature
    Erdos, Laszlo
    Salmhofer, Manfred
    MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (02) : 261 - 294
  • [29] IMPROVED DECAY OF CONICAL AVERAGES OF THE FOURIER TRANSFORM
    Harris, Terence L. J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (11) : 4781 - 4796
  • [30] Decay of the Fourier transform of surfaces with vanishing curvature
    László Erdős
    Manfred Salmhofer
    Mathematische Zeitschrift, 2007, 257 : 261 - 294