We consider the pseudospectrum of the non-self-adjoint operator \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathfrak{D} = - h^2 \frac{{d^2 }}{{dx^2 }} + iV(x)$$
\end{document}, where V(x) is a periodic entire analytic function, real on the real axis, with a real period T. In this operator, h is treated as a small parameter. We show that the pseudospectrum of this operator is the closure of its numerical image, i.e., a half-strip in ℂ. In this case, the pseudoeigenfunctions, i.e., the functions ϕ(h, x) satisfying the condition \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left\| {\mathfrak{D}\varphi - \lambda \varphi } \right\| = O(h^N ), \left\| \varphi \right\| = 1, N \in \mathbb{N}$$
\end{document}, can be constructed explicitly. Thus, it turns out that the pseudospectrum of the operator under study is much wider than its spectrum.