Sediment core analysis using artificial intelligence

被引:0
|
作者
Di Martino A. [1 ]
Carlini G. [2 ]
Castellani G. [3 ]
Remondini D. [2 ]
Amorosi A. [1 ]
机构
[1] Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Piazza di Porta San Donato 1, Bologna
[2] Department of Physics and Astronomy, University of Bologna, Bologna
[3] Department of Medical and Surgical Sciences, University of Bologna, Bologna
关键词
D O I
10.1038/s41598-023-47546-2
中图分类号
学科分类号
摘要
Subsurface stratigraphic modeling is crucial for a variety of environmental, societal, and economic challenges. However, the need for specific sedimentological skills in sediment core analysis may constitute a limitation. Methods based on Machine Learning and Deep Learning can play a central role in automatizing this time-consuming procedure. In this work, using a robust dataset of high-resolution digital images from continuous sediment cores of Holocene age that reflect a wide spectrum of continental to shallow-marine depositional environments, we outline a novel deep-learning-based approach to perform automatic semantic segmentation directly on core images, leveraging the power of convolutional neural networks. To optimize the interpretation process and maximize scientific value, we use six sedimentary facies associations as target classes in lieu of ineffective classification methods based uniquely on lithology. We propose an automated model that can rapidly characterize sediment cores, allowing immediate guidance for stratigraphic correlation and subsurface reconstructions. © 2023, The Author(s).
引用
收藏
相关论文
共 50 条
  • [31] Education 4.0 using artificial intelligence for students performance analysis
    Chen, Zhongshan
    Zhang, Juxiao
    Jiang, Xiaoyan
    Hu, Zuojin
    Han, Xue
    Xu, Mengyang
    Savitha, V
    Vivekananda, G. N.
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2020, 23 (66): : 124 - 137
  • [32] Automated char classification using image analysis and artificial intelligence
    Alpana
    Chand, Satish
    Mohapatra, Subrajeet
    Mishra, Vivek
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2021, 28 (02) : 235 - 248
  • [33] An Unbiased Analysis of Soft Drinks in Mexico Using Artificial Intelligence
    Urueta-Hinojosa, D. E.
    Lavin-Delgado, J. E.
    Lara-Velazquez, P.
    Gutierrez-Andrade, M. A.
    Gomez-Aguilar, J. F.
    De los Cobos-Silva, S. G.
    Rincon-Garcia, E. A.
    Mora-Gutierrez, R. A.
    ANNALS OF NUTRITION AND METABOLISM, 2024, 80 : 171 - 171
  • [34] Exploratory Analysis of South American Wines Using Artificial Intelligence
    Carneiro, Candice N.
    Gomez, Federico J., V
    Spisso, Adrian
    Fernanda Silva, Maria
    Santos, Jorge L. O.
    Dias, Fabio de S.
    BIOLOGICAL TRACE ELEMENT RESEARCH, 2023, 201 (09) : 4590 - 4599
  • [35] Ethical Possibilities of Using Artificial Intelligence: Cultural and Philosophical Analysis
    Gasparian, Diana E.
    Turko, Dmitrii S.
    V. Besschetnova, Elena
    VOPROSY FILOSOFII, 2023, (09) : 93 - 102
  • [36] Analysis of COVID-19 Pandemic Using Artificial Intelligence
    Amjad, Maaz
    Rodriguez Chavez, Yuriria
    Nayab, Zaryyab
    Zhila, Alisa
    Sidorov, Grigori
    Gelbukh, Alexander
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, MICAI 2020, PT II, 2020, 12469 : 65 - 73
  • [37] Linear discriminant analysis in red sorghum using artificial intelligence
    Chinnasamy, Kavipriya
    Arumugam, Yuvaraja
    Jegadeesan, Ramalingam
    Chockalingam, Vanniarajan
    NUCLEUS-INDIA, 2021, 64 (01): : 103 - 113
  • [38] An Analysis of Research Trends for Using Artificial Intelligence in Cultural Heritage
    Girbacia, Florin
    ELECTRONICS, 2024, 13 (18)
  • [39] The Direction of Information Security Control Analysis Using Artificial Intelligence
    Lee, Sangdo
    Shin, Yongtae
    ADVANCES IN COMPUTER SCIENCE AND UBIQUITOUS COMPUTING, 2018, 474 : 872 - 877
  • [40] Sensitivity analysis–based sepsis prognosis using artificial intelligence
    de Alencar Saraiva J.L.
    Becker O.M., Jr.
    Silva E.
    Kadirkamanathan V.
    Kienitz K.H.
    Research on Biomedical Engineering, 2020, 36 (04): : 449 - 461