Computable representations for convex hulls of low-dimensional quadratic forms

被引:0
|
作者
Kurt M. Anstreicher
Samuel Burer
机构
[1] University of Iowa,Department of Management Sciences
来源
Mathematical Programming | 2010年 / 124卷
关键词
Quadratic form; Convex hull; Convex envelope; Global optimization; Semidefinite programming; 90C20; 90C22; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} be the convex hull of points \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\{{1 \choose x}{1 \choose x}^T \,|\, x\in \mathcal{F}\subset \Re^n\}}}$$\end{document}. Representing or approximating \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} is a fundamental problem for global optimization algorithms based on convex relaxations of products of variables. We show that if n ≤ 4 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} is a simplex, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} has a computable representation in terms of matrices X that are doubly nonnegative (positive semidefinite and componentwise nonnegative). We also prove that if n = 2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} is a box, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} has a representation that combines semidefiniteness with constraints on product terms obtained from the reformulation-linearization technique (RLT). The simplex result generalizes known representations for the convex hull of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$$\end{document} when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}\subset\Re^2}$$\end{document} is a triangle, while the result for box constraints generalizes the well-known fact that in this case the RLT constraints generate the convex hull of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$$\end{document}. When n = 3 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} is a box, we show that a representation for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} can be obtained by utilizing the simplex result for n = 4 in conjunction with a triangulation of the 3-cube.
引用
收藏
页码:33 / 43
页数:10
相关论文
共 50 条
  • [21] Diagnostic quality assessment for low-dimensional ECG representations
    Kovács, Péter
    Böck, Carl
    Tschoellitsch, Thomas
    Huemer, Mario
    Meier, Jens
    Computers in Biology and Medicine, 2022, 150
  • [22] Low-dimensional representations of Aut (F-2)
    Dokovic, DZ
    Platonov, VP
    MANUSCRIPTA MATHEMATICA, 1996, 89 (04) : 475 - 509
  • [23] Classification and Representations of Low-Dimensional Nanomaterials: Terms and Symbols
    Boon K. Teo
    X. H. Sun
    Journal of Cluster Science, 2007, 18 : 346 - 357
  • [24] Low-dimensional linear representations of mapping class groups
    Korkmaz, Mustafa
    JOURNAL OF TOPOLOGY, 2023, 16 (03) : 899 - 935
  • [25] Low-dimensional representations of genome-scale metabolism
    Cain, Samuel
    Merzbacher, Charlotte
    Oyarzun, Diego A.
    IFAC PAPERSONLINE, 2024, 58 (23): : 61 - 66
  • [26] Diagnostic quality assessment for low-dimensional ECG representations
    Kovacs, Peter
    Boeck, Carl
    Tschoellitsch, Thomas
    Huemer, Mario
    Meier, Jens
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [27] CONVEX FUNCTIONS OF QUADRATIC FORMS
    MARCUS, M
    DUKE MATHEMATICAL JOURNAL, 1957, 24 (03) : 321 - 326
  • [28] LOW-DIMENSIONAL LATTICES .3. PERFECT FORMS
    CONWAY, JH
    SLOANE, NJA
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 418 (1854): : 43 - 80
  • [29] REPRESENTATIONS OF QUADRATIC-FORMS
    KITAOKA, Y
    NAGOYA MATHEMATICAL JOURNAL, 1978, 69 (FEB) : 117 - 120
  • [30] QUADRATIC DISCRIMINATION - SOME RESULTS ON OPTIMAL LOW-DIMENSIONAL REPRESENTATION
    YOUNG, DM
    MARCO, VR
    ODELL, PL
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1987, 17 (03) : 307 - 319