Computable representations for convex hulls of low-dimensional quadratic forms

被引:0
|
作者
Kurt M. Anstreicher
Samuel Burer
机构
[1] University of Iowa,Department of Management Sciences
来源
Mathematical Programming | 2010年 / 124卷
关键词
Quadratic form; Convex hull; Convex envelope; Global optimization; Semidefinite programming; 90C20; 90C22; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} be the convex hull of points \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\{{1 \choose x}{1 \choose x}^T \,|\, x\in \mathcal{F}\subset \Re^n\}}}$$\end{document}. Representing or approximating \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} is a fundamental problem for global optimization algorithms based on convex relaxations of products of variables. We show that if n ≤ 4 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} is a simplex, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} has a computable representation in terms of matrices X that are doubly nonnegative (positive semidefinite and componentwise nonnegative). We also prove that if n = 2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} is a box, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} has a representation that combines semidefiniteness with constraints on product terms obtained from the reformulation-linearization technique (RLT). The simplex result generalizes known representations for the convex hull of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$$\end{document} when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}\subset\Re^2}$$\end{document} is a triangle, while the result for box constraints generalizes the well-known fact that in this case the RLT constraints generate the convex hull of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\{(x_1, x_2, x_1x_2)\,|\, x\in\mathcal{F}\}}}$$\end{document}. When n = 3 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} is a box, we show that a representation for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{C}}$$\end{document} can be obtained by utilizing the simplex result for n = 4 in conjunction with a triangulation of the 3-cube.
引用
收藏
页码:33 / 43
页数:10
相关论文
共 50 条
  • [1] Computable representations for convex hulls of low-dimensional quadratic forms
    Anstreicher, Kurt M.
    Burer, Samuel
    MATHEMATICAL PROGRAMMING, 2010, 124 (1-2) : 33 - 43
  • [2] LMI Representations of the Convex Hulls of Quadratic Basic Semialgebraic Sets
    Yildiran, Ugur
    Kose, I. Emre
    JOURNAL OF CONVEX ANALYSIS, 2010, 17 (02) : 535 - 551
  • [3] Noise Stability Is Computable and Approximately Low-Dimensional
    De, Anindya
    Mossel, Elchanan
    Neeman, Joe
    32ND COMPUTATIONAL COMPLEXITY CONFERENCE (CCC 2017), 2017, 79
  • [4] Noise Stability is Computable and Approximately Low-Dimensional
    De, Anindya
    Mossel, Elchanan
    Neeman, Joe
    THEORY OF COMPUTING, 2019, 15
  • [5] LOW-DIMENSIONAL LATTICES .1. QUADRATIC-FORMS OF SMALL DETERMINANT
    CONWAY, JH
    SLOANE, NJA
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 418 (1854): : 17 - 41
  • [6] Learning Low-Dimensional Temporal Representations
    Su, Bing
    Wu, Ying
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [7] Low-dimensional conducting forms of carbon
    Forro, L.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2000, 56 : S161 - S161
  • [8] Low-dimensional representations of special unitary groups
    Hiss, G
    Malle, G
    JOURNAL OF ALGEBRA, 2001, 236 (02) : 745 - 767
  • [9] Low-dimensional representations of finite orthogonal groups
    Magaard, Kay
    Malle, Gunter
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2021, 171 (03) : 585 - 606
  • [10] A Geometrical Method for Low-Dimensional Representations of Simulations
    Iza-Teran, Rodrigo
    Garcke, Jochen
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (02): : 472 - 496