Multigrid Method for Nonlinear Eigenvalue Problems Based on Newton Iteration

被引:0
|
作者
Fei Xu
Manting Xie
Meiling Yue
机构
[1] Beijing University of Technology,Institute of Computational Mathematics, Department of Mathematics, Faculty of Science
[2] Tianjin University,Center for Applied Mathematics
[3] Beijing Technology and Business University,School of Mathematics and Statistics
来源
关键词
Multigrid method; Nonlinear eigenvalue problems; Newton iteration;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and eigenfunction u separately, we treat the eigenpair (λ,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda , u)$$\end{document} as one element in a product space R×H01(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}} \times H_0^1(\Omega )$$\end{document}. Then in the presented multigrid method, only one discrete linear boundary value problem needs to be solved for each level of the multigrid sequence. Because we avoid solving large-scale nonlinear eigenvalue problems directly, the overall efficiency is significantly improved. The optimal error estimate and linear computational complexity can be derived simultaneously. In addition, we also provide an improved multigrid method coupled with a mixing scheme to further guarantee the convergence and stability of the iteration scheme. More importantly, we prove convergence for the residuals after each iteration step. For nonlinear eigenvalue problems, such theoretical analysis is missing from the existing literatures on the mixing iteration scheme.
引用
收藏
相关论文
共 50 条
  • [41] A mixed method of subspace iteration for Dirichlet eigenvalue problems
    Gyou -Bong Lee
    Sung -Nam Ha
    Bum -Il Hong
    Korean Journal of Computational & Applied Mathematics, 1997, 4 (1): : 243 - 248
  • [42] A multigrid-Lanczos algorithm for the numerical solutions of nonlinear eigenvalue problems
    Chien, CS
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (05): : 1217 - 1228
  • [43] A new Newton-Landweber iteration for nonlinear inverse problems
    Xiao, Cuie
    Deng, Youjun
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2011, 36 (1-2) : 489 - 505
  • [44] A new multigrid finite element method for the transmission eigenvalue problems
    Han, Jiayu
    Yang, Yidu
    Bi, Hai
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 : 96 - 106
  • [46] An Algebraic Multigrid Method for Eigenvalue Problems and Its Numerical Tests
    Zhang, Ning
    Han, Xiaole
    He, Yunhui
    Xie, Hehu
    You, Chun'guang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (01) : 1 - 19
  • [47] Convergence and optimality of adaptive multigrid method for multiple eigenvalue problems
    Xu, Fei
    Xie, Manting
    Huang, Qiumei
    Yue, Meiling
    Ma, Hongkun
    Journal of Computational and Applied Mathematics, 2022, 415
  • [48] Convergence and optimality of adaptive multigrid method for multiple eigenvalue problems
    Xu, Fei
    Xie, Manting
    Huang, Qiumei
    Yue, Meiling
    Ma, Hongkun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 415
  • [49] The multilevel quasidiffusion method with multigrid in energy for eigenvalue transport problems
    Cornejo, Luke R.
    Anistratov, Dmitriy Y.
    PROGRESS IN NUCLEAR ENERGY, 2017, 101 : 401 - 408
  • [50] A Newton’s method characterization for real eigenvalue problems
    Yunho Kim
    Numerische Mathematik, 2019, 142 : 941 - 971