Multigrid Method for Nonlinear Eigenvalue Problems Based on Newton Iteration

被引:0
|
作者
Fei Xu
Manting Xie
Meiling Yue
机构
[1] Beijing University of Technology,Institute of Computational Mathematics, Department of Mathematics, Faculty of Science
[2] Tianjin University,Center for Applied Mathematics
[3] Beijing Technology and Business University,School of Mathematics and Statistics
来源
关键词
Multigrid method; Nonlinear eigenvalue problems; Newton iteration;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a novel multigrid method based on Newton iteration is proposed to solve nonlinear eigenvalue problems. Instead of handling the eigenvalue λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and eigenfunction u separately, we treat the eigenpair (λ,u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\lambda , u)$$\end{document} as one element in a product space R×H01(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}} \times H_0^1(\Omega )$$\end{document}. Then in the presented multigrid method, only one discrete linear boundary value problem needs to be solved for each level of the multigrid sequence. Because we avoid solving large-scale nonlinear eigenvalue problems directly, the overall efficiency is significantly improved. The optimal error estimate and linear computational complexity can be derived simultaneously. In addition, we also provide an improved multigrid method coupled with a mixing scheme to further guarantee the convergence and stability of the iteration scheme. More importantly, we prove convergence for the residuals after each iteration step. For nonlinear eigenvalue problems, such theoretical analysis is missing from the existing literatures on the mixing iteration scheme.
引用
收藏
相关论文
共 50 条
  • [1] Multigrid Method for Nonlinear Eigenvalue Problems Based on Newton Iteration
    Xu, Fei
    Xie, Manting
    Yue, Meiling
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 94 (02)
  • [2] A full multigrid method for nonlinear eigenvalue problems
    JIA ShangHui
    XIE HeHu
    XIE ManTing
    XU Fei
    Science China(Mathematics), 2016, 59 (10) : 2037 - 2048
  • [3] A full multigrid method for nonlinear eigenvalue problems
    Jia, ShangHui
    Xie, HeHu
    Xie, ManTing
    Xu, Fei
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (10) : 2037 - 2048
  • [4] A full multigrid method for nonlinear eigenvalue problems
    ShangHui Jia
    HeHu Xie
    ManTing Xie
    Fei Xu
    Science China Mathematics, 2016, 59 : 2037 - 2048
  • [5] ITERATION METHOD FOR SOLVING NONLINEAR EIGENVALUE PROBLEMS
    DEMOULIN, YMJ
    CHEN, YM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (03) : 588 - 595
  • [6] A block Newton method for nonlinear eigenvalue problems
    Daniel Kressner
    Numerische Mathematik, 2009, 114 : 355 - 372
  • [7] A block Newton method for nonlinear eigenvalue problems
    Kressner, Daniel
    NUMERISCHE MATHEMATIK, 2009, 114 (02) : 355 - 372
  • [8] A Modified Newton Method for Nonlinear Eigenvalue Problems
    Chen, Xiao-Ping
    Dai, Hua
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (01) : 139 - 150
  • [9] Local and Parallel Multigrid Method for Nonlinear Eigenvalue Problems
    Fei Xu
    Qiumei Huang
    Journal of Scientific Computing, 2020, 82
  • [10] Local and Parallel Multigrid Method for Nonlinear Eigenvalue Problems
    Xu, Fei
    Huang, Qiumei
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)