Approximation by generalized shifts of the Riemann zeta-function in short intervals

被引:0
|
作者
Antanas Laurinčikas
机构
[1] Vilnius University,Faculty of Mathematics and Informatics, Institute of Mathematics
来源
The Ramanujan Journal | 2021年 / 56卷
关键词
Approximation of analytic functions; Limit theorem; Riemann zeta-function; Universality; 11M06;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that the Riemann zeta-function ζ(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (s)$$\end{document} is universal in the sense that the shifts ζ(s+iτ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (s+i\tau )$$\end{document}, τ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in \mathbb {R}$$\end{document}, approximate a wide class of analytic functions. In the paper, the approximation by generalized shifts ζ(s+iφ(τ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta (s+i\varphi (\tau ))$$\end{document}, where φ(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (\tau )$$\end{document} is a certain differentiable function, is considered, and the property of the density for the above shifts in short intervals is obtained.
引用
收藏
页码:309 / 322
页数:13
相关论文
共 50 条