Universality of the Riemann zeta-function in short intervals

被引:17
|
作者
Laurincikas, Antanas [1 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Inst Math, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
关键词
Mergelyan theorem; Riemann zeta-function; Universality; Weak convergence; VALUES;
D O I
10.1016/j.jnt.2019.04.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By the Voronin theorem, the set of shifts of the Riemann zeta-function zeta(s+i tau), s = sigma + it, tau is an element of R, that approximate any given non-vanishing analytic function defined on {s is an element of C : 1/2 < sigma < 1} has a positive lower density. In the paper, it is proved that the same property of the above shifts remains valid in the intervals [T,T + H] with T-1/3(log T)(26/15) <= H <= T. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:279 / 295
页数:17
相关论文
共 50 条