Data-driven estimation of scalar quantities from planar velocity measurements by deep learning applied to temperature in thermal convection

被引:0
|
作者
Philipp Teutsch
Theo Käufer
Patrick Mäder
Christian Cierpka
机构
[1] Technische Universität Ilmenau,Institute of Practical Computer Science and Media Informatics
[2] Technische Universität Ilmenau,Institute of Thermodynamics and Fluid Mechanics
[3] Friedrich-Schiller-Universität,Faculty of Biological Sciences
[4] Lund University,Department of Biomedical Engineering
来源
Experiments in Fluids | 2023年 / 64卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The measurement of the transport of scalar quantities within flows is oftentimes laborious, difficult or even unfeasible. On the other hand, velocity measurement techniques are very advanced and give high-resolution, high-fidelity experimental data. Hence, we explore the capabilities of a deep learning model to predict the scalar quantity, in our case temperature, from measured velocity data. Our method is purely data-driven and based on the u-net architecture and, therefore, well-suited for planar experimental data. We demonstrate the applicability of the u-net on experimental temperature and velocity data, measured in large aspect ratio Rayleigh–Bénard convection at Pr=7.1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Pr} =7.1$$\end{document} and Ra=2×105,4×105,7×105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Ra} =2\times 10^5,4\times 10^5,7\times 10^5$$\end{document}. We conduct a hyper-parameter optimization and ablation study to ensure appropriate training convergence and test different architectural variations for the u-net. We test two application scenarios that are of interest to experimentalists. One, in which the u-net is trained with data of the same experimental run and one in which the u-net is trained on data of different Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Ra}$$\end{document}. Our analysis shows that the u-net can predict temperature fields similar to the measurement data and preserves typical spatial structure sizes. Moreover, the analysis of the heat transfer associated with the temperature showed good agreement when the u-net is trained with data of the same experimental run. The relative difference between measured and reconstructed local heat transfer of the system characterized by the Nusselt number Nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Nu}$$\end{document} is between 0.3 and 14.1% depending on Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Ra}$$\end{document}. We conclude that deep learning has the potential to supplement measurements and can partially alleviate the expense of additional measurement of the scalar quantity.
引用
收藏
相关论文
共 50 条
  • [21] Pressure from data-driven estimation of velocity fields using snapshot PIV and fast probes
    Chen, Junwei
    Raiola, Marco
    Discetti, Stefano
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2022, 136
  • [22] Data-Driven DOA Estimation Methods Based on Deep Learning for Underwater Acoustic Vector Sensor Array
    Xie, Yangyang
    Wang, Biao
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2023, 57 (03) : 16 - 29
  • [23] APPLIED LINGUISTICS WITH DEEP LEARNING-BASED DATA-DRIVEN TEXT-TO-SPEECH SYNTHESIZER FOR ARABIC CORPUS
    Alshammari, Alya
    Alotaibi, Shoayee Dlaim
    Hassan, Abdulkhaleq Q. A.
    Alrslani, Faheed A. F.
    Aljohani, Nasser
    Sultan, Hanan Al
    Alzaidi, Muhammad Swaileh A.
    Alzubaidi, Abdulaziz A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (09N10)
  • [24] From machine learning to deep learning: Advances of the recent data-driven paradigm shift in medicine and healthcare
    Chakraborty, Chiranjib
    Bhattacharya, Manojit
    Pal, Soumen
    Lee, Sang-Soo
    CURRENT RESEARCH IN BIOTECHNOLOGY, 2024, 7
  • [25] On Learning Data-Driven Models For In-Flight Drone Battery Discharge Estimation From Real Data
    Coursey, Austin
    Quinones-Grueiro, Marcos
    Biswas, Gautam
    2023 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING, SMARTCOMP, 2023, : 164 - 171
  • [26] Can Data-Driven Supervised Machine Learning Approaches Applied to Infrared Thermal Imaging Data Estimate Muscular Activity and Fatigue?
    Perpetuini, David
    Formenti, Damiano
    Cardone, Daniela
    Trecroci, Athos
    Rossi, Alessio
    Di Credico, Andrea
    Merati, Giampiero
    Alberti, Giampietro
    Di Baldassarre, Angela
    Merla, Arcangelo
    SENSORS, 2023, 23 (02)
  • [27] Data-driven temperature estimation of non-contact solids using deep-learning re duce d-order models
    Jiang, Genghui
    Kang, Ming
    Cai, Zhenwei
    Liu, Yingzheng
    Wang, Weizhe
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 185
  • [28] A data-driven physics-informed deep learning approach for estimating sub-core permeability from coreflooding saturation measurements
    Chakraborty, A.
    Rabinovich, A.
    Moreno, Z.
    ADVANCES IN WATER RESOURCES, 2025, 198
  • [29] Data-driven transient frequency stability assessment: A deep learning method with combined estimation-correction framework
    Wen, Yunfeng
    Zhao, Rongzhen
    Huang, Mingzeng
    Guo, Chuangxin
    Energy Conversion and Economics, 2020, 1 (03): : 198 - 209
  • [30] Physics-informed data-driven reconstruction of turbulent wall-bounded flows from planar measurements
    Hora, Gurpreet S.
    Gentine, Pierre
    Momen, Mostafa
    Giometto, Marco G.
    PHYSICS OF FLUIDS, 2024, 36 (11)