Statistical mechanics meets single-cell biology

被引:0
|
作者
Andrew E. Teschendorff
Andrew P. Feinberg
机构
[1] University of Chinese Academy of Sciences,CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences
[2] Chinese Academy of Sciences,UCL Cancer Institute
[3] University College London,Center for Epigenetics
[4] Johns Hopkins University School of Medicine,Department of Biomedical Engineering
[5] Johns Hopkins University,Department of Medicine
[6] Johns Hopkins University School of Medicine,undefined
来源
Nature Reviews Genetics | 2021年 / 22卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Single-cell omics is transforming our understanding of cell biology and disease, yet the systems-level analysis and interpretation of single-cell data faces many challenges. In this Perspective, we describe the impact that fundamental concepts from statistical mechanics, notably entropy, stochastic processes and critical phenomena, are having on single-cell data analysis. We further advocate the need for more bottom-up modelling of single-cell data and to embrace a statistical mechanics analysis paradigm to help attain a deeper understanding of single-cell systems biology.
引用
收藏
页码:459 / 476
页数:17
相关论文
共 50 条
  • [31] Dynamic single-cell analysis for quantitative biology
    Di Carlo, Dino
    Lee, Luke P.
    ANALYTICAL CHEMISTRY, 2006, 78 (23) : 7918 - 7925
  • [32] Opportunities for Single-Cell Sequencing in Synthetic Biology
    Wollny, Damian
    CHEMSYSTEMSCHEM, 2020, 2 (06)
  • [33] Translational opportunities of single-cell biology in atherosclerosis
    de Winther, Menno P. J.
    Back, Magnus
    Evans, Paul
    Gomez, Delphine
    Goncalves, Isabel
    Jorgensen, Helle F.
    Koenen, Rory R.
    Lutgens, Esther
    Norata, Giuseppe Danilo
    Osto, Elena
    Dib, Lea
    Simons, Michael
    Stellos, Konstantinos
    Yla-Herttuala, Seppo
    Winkels, Holger
    Bochaton-Piallat, Marie-Luce
    Monaco, Claudia
    EUROPEAN HEART JOURNAL, 2023, 44 (14) : 1216 - 1230
  • [34] Graph representation learning for single-cell biology
    Hetzel, Leon
    Fischer, David S.
    Guennemann, Stephan
    Theis, Fabian J.
    CURRENT OPINION IN SYSTEMS BIOLOGY, 2021, 28
  • [35] The Technology and Biology of Single-Cell RNA Sequencing
    Kolodziejczyk, Aleksandra A.
    Kim, Jong Kyoung
    Svensson, Valentine
    Marioni, John C.
    Teichmann, Sarah A.
    MOLECULAR CELL, 2015, 58 (04) : 610 - 620
  • [36] Statistical analysis of single-cell protein data
    Fridley, Brooke L.
    Vandekar, Simon
    Chervoneva, Inna
    Wrobel, Julia
    Ma, Siyuan
    BIOCOMPUTING 2024, PSB 2024, 2024, : 654 - 660
  • [37] Statistical Mechanics and Biology Preface
    Lebowitz, Joel L.
    JOURNAL OF STATISTICAL PHYSICS, 2011, 142 (06) : 1123 - 1123
  • [38] Statistical Mechanics and Biology Preface
    Lebowitz, Joel L.
    JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (02) : 217 - 218
  • [39] Lineage tracing meets single-cell omics: opportunities and challenges
    Wagner, Daniel E.
    Klein, Allon M.
    NATURE REVIEWS GENETICS, 2020, 21 (07) : 410 - 427
  • [40] Not if but when nanopore protein sequencing meets single-cell proteomics
    Motone, Keisuke
    Nivala, Jeff
    NATURE METHODS, 2023, 20 (03) : 336 - 338