USBE: User-similarity based estimator for multimedia cold-start recommendation

被引:0
|
作者
Haitao He
Ruixi Zhang
Yangsen Zhang
Jiadong Ren
机构
[1] Yanshan University,
[2] Beijing Information Science and Technology University,undefined
来源
关键词
Recommender system; Collaborative filtering; Cold-start challenge; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
To address user cold-start challenge in multimedia recommender systems, we proposed a new model named USBE in this paper. The model doesn’t take the new user’s personal and social information as the necessary parameters to solve cold-start challenge, and new user can complete cold-start by having a simple system experience. Based on the user-similarity and the discrimination of the multimedia items, the model can recommend suitable items for cold-start users and let users choose and give feedback independently. Our model is lightweight and low delay, and provides a new cold-start mode. To complement USBE model, we proposed a cyclic training multilayer perceptron model (Re-NN) to get the strategy of new user’s user-similarity changes. Experiments on a real-world movie recommendation dataset Movielens show: Our model has good results and achieves state-of-the-art after 4 rounds of cold-start recommendations.
引用
收藏
页码:1127 / 1142
页数:15
相关论文
共 50 条
  • [41] Research For Cold-start Problem In Network-based Recommendation Algorithm
    Liu, Limin
    Zhang, Chenyang
    Ma, Zhiqiang
    Xiao, Yuhong
    [J]. PROGRESS IN MECHATRONICS AND INFORMATION TECHNOLOGY, PTS 1 AND 2, 2014, 462-463 : 861 - 867
  • [42] Content-based Graph Reconstruction for Cold-start Item Recommendation
    Kim, Jinri
    Kim, Eungi
    Yeo, Kwangeun
    Jeon, Yujin
    Kim, Chanwoo
    Lee, Sewon
    Lee, Joonseok
    [J]. PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 1263 - 1273
  • [43] Addressing cold-start: Scalable recommendation with tags and keywords
    Ji, Ke
    Shen, Hong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2015, 83 : 42 - 50
  • [44] Wasserstein Collaborative Filtering for Item Cold-start Recommendation
    Meng, Yitong
    Yan, Xiao
    Liu, Weiwen
    Wu, Huanhuan
    Cheng, James
    [J]. UMAP'20: PROCEEDINGS OF THE 28TH ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, 2020, : 318 - 322
  • [45] Latent Factor Representations for Cold-Start Video Recommendation
    Roy, Sujoy
    Guntuku, Sharath Chandra
    [J]. PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), 2016, : 99 - 106
  • [46] Learning Informative Priors from Heterogeneous Domains to Improve Recommendation in Cold-Start User Domains
    Hu, Liang
    Cao, Longbing
    Cao, Jian
    Gu, Zhiping
    Xu, Guandong
    Yang, Dingyu
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2016, 35 (02)
  • [47] Item Cold-Start Recommendation with Personalized Feature Selection
    Chen, Yi-Fan
    Zhao, Xiang
    Liu, Jin-Yuan
    Ge, Bin
    Zhang, Wei-Ming
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2020, 35 (05) : 1217 - 1230
  • [48] Fashionist: Personalising Outfit Recommendation for Cold-Start Scenarios
    Verma, Dhruv
    Gulati, Kshitij
    Goel, Vasu
    Shah, Rajiv Ratn
    [J]. MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 4527 - 4529
  • [49] Cold-Start Recommendation with Provable Guarantees: A Decoupled Approach
    Barjasteh, Iman
    Forsati, Rana
    Ross, Dennis
    Esfahanian, Abdol-Hossein
    Radha, Hayder
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (06) : 1462 - 1474
  • [50] Cold-start Sequential Recommendation via Meta Learner
    Zheng, Yujia
    Liu, Siyi
    Li, Zekun
    Wu, Shu
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4706 - 4713