Graphene Oxide Papers in Nanogenerators for Self-Powered Humidity Sensing by Finger Tapping

被引:0
|
作者
Faezeh Ejehi
Raheleh Mohammadpour
Elham Asadian
Pezhman Sasanpour
Somayeh Fardindoost
Omid Akhavan
机构
[1] Sharif University of Technology,Institute for Nanoscience and Nanotechnology
[2] Shahid Beheshti University of Medical Sciences,Department of Medical Physics and Biomedical Engineering, School of Medicine
[3] Institute for Research in Fundamental Sciences (IPM),School of Nanoscience
[4] Sharif University of Technology,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Triboelectric nanogenerators (TENGs) offer an emerging market of self-sufficient power sources, converting the mechanical energy of the environment to electricity. Recently reported high power densities for the TENGs provide new applications opportunities, such as self-powered sensors. Here in this research, a flexible graphene oxide (GO) paper was fabricated through a straightforward method and utilized as the electrode of TENGs. Outstanding power density as high as 1.3 W.m−2, an open-circuit voltage up to 870 V, and a current density of 1.4 µA.cm−2 has been extracted in vertical contact-separation mode. The all-flexible TENG has been employed as a self-powered humidity sensor to investigate the effect of raising humidity on the output voltage and current by applying mechanical agitation in two forms of using a tapping device and finger tapping. Due to the presence of superficial functional groups on the GO paper, water molecules are inclined to be adsorbed, resulting in a considerable reduction in both generated voltage (from 144 V to 14 V) and current (from 23 µA to 3.7 µA) within the range of relative humidity of 20% to 99%. These results provide a promising applicability of the first suggested sensitive self-powered GO TENG humidity sensor in portable/wearable electronics.
引用
收藏
相关论文
共 50 条
  • [31] Triboelectric Nanogenerators for Self-Powered Wound Healing
    Xiao, Xiao
    Nashalian, Ardo
    Libanori, Alberto
    Fang, Yunsheng
    Li, Xiyao
    Chen, Jun
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (20)
  • [32] Textile triboelectric nanogenerators for self-powered biomonitoring
    Lama, John
    Yau, Andy
    Chen, Guorui
    Sivakumar, Aditya
    Zhao, Xun
    Chen, Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19149 - 19178
  • [33] Triboelectric Nanogenerators for Self-Powered Breath Monitoring
    Shen, Sophia
    Xiao, Xiao
    Xiao, Xiao
    Chen, Jun
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 3952 - 3965
  • [34] Triboelectric nanogenerators as self-powered active sensors
    Wang, Sihong
    Lin, Long
    Wang, Zhong Lin
    NANO ENERGY, 2015, 11 : 436 - 462
  • [35] Triboelectric nanogenerators for self-powered drug delivery
    Li, Xiyao
    Tat, Trinny
    Chen, Jun
    TRENDS IN CHEMISTRY, 2021, 3 (09): : 765 - 778
  • [36] Self-Powered Sensors and Systems Based on Nanogenerators
    Wu, Zhiyi
    Cheng, Tinghai
    Wang, Zhong Lin
    SENSORS, 2020, 20 (10)
  • [37] Self-Powered Flexible Sensor Based on Triboe:ectric Nanogenerators for Noncontact Motion Sensing
    Shiwei, A.
    Gao Xiping
    Lu, Chang
    Yao Dahu
    Lu, Min
    Zhang Mengpei
    Sun Yafei
    Fang Hanqing
    Li Dongxue
    IEEE SENSORS JOURNAL, 2022, 22 (13) : 12547 - 12559
  • [38] Synergizing Machine Learning Algorithm with Triboelectric Nanogenerators for Advanced Self-Powered Sensing Systems
    Li, Roujuan
    Wei, Di
    Wang, Zhonglin
    NANOMATERIALS, 2024, 14 (02)
  • [39] Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators
    Jiang, Min
    Lu, Yi
    Zhu, Zhiyuan
    Jia, Wenzhu
    MICROMACHINES, 2021, 12 (06)
  • [40] Progress and recent advances in self-powered gas sensing based on triboelectric and piezoelectric nanogenerators
    Anbalagan, Sundaramoorthy
    Manojkumar, Kaliyannan
    Muthuramalingam, Mukilan
    Hajra, Sugato
    Panda, Swati
    Sahu, Rojalin
    Kim, Hoe Joon
    Sundaramoorthy, Arunmetha
    Nithyavathy, Nagarajan
    Vivekananthan, Venkateswaran
    CHEMICAL ENGINEERING JOURNAL, 2024, 497