Analysis of a Quasi-Two-Dimensional Flamelet Model on a Three-Feed Non-premixed Oxy-Combustion Burner

被引:0
|
作者
Panlong Yu
Hiroaki Watanabe
Heinz Pitsch
Isao Yuri
Hiroyuki Nishida
Toshiaki Kitagawa
机构
[1] Kyushu University,Department of Energy and Environmental Engineering, Interdisciplinary Graduate School of Engineering Sciences
[2] Kyushu University,International Institute for Carbon
[3] RWTH Aachen University,Neutral Energy Research
[4] Central Research Institute of Electric Power Industry (CRIEPI),Institute for Combustion Technology
[5] Kyushu University,Energy Engineering Research Laboratory
来源
关键词
Flamelet model; Non-adiabatic; Diluent; Three-feed; Non-premixed combustion;
D O I
暂无
中图分类号
学科分类号
摘要
Three-feed combustion systems in which fuel gas, oxygen, and diluent (CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_{2}$$\end{document}) are issued into a combustor are key components to realize an oxy-fuel type gas turbine in a zero-emission plant. Yet, simulations of such systems using mixture fraction-based models are difficult, since multiple mixture fractions are required to describe the system. In this study, large-eddy simulations (LES) with different formulations of non-adiabatic quasi-two-dimensional flamelet (Q2DF) models were performed on a three-feed non-premixed swirl burner. The Q2DF models are derived based on the treatments regarding the third stream; the diluent stream is put in the oxidizer side and/or in the fuel side, giving rise to three models called Q2DF1, Q2DF2, and Q2DF3 models. Results show that the three Q2DF models can predict the results of the experiment well; however, the deviations could not be overlooked. The analysis shows that the differences between the three models become apparent as the mixture fraction of the inactive third stream (Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_3$$\end{document}) evolves very large, otherwise, the three models give almost the same results. It is confirmed that for a pure inactive diluent third stream when Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_3$$\end{document} is quite large, its scalar dissipation rate (χ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _3$$\end{document}) plays an important role and the mixing way (premix or non-premix) of the third stream with other streams should be taken into account, however, the influence of χ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _3$$\end{document} on the performance of the three models is quite limited in the condition of a smaller Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_3$$\end{document}, for instance, less than 0.8, and thus the mixing way of the third stream in the three models will not affect the system.
引用
收藏
页码:303 / 327
页数:24
相关论文
共 50 条
  • [21] An SMLD Joint PDF Model for Turbulent Non-Premixed Combustion Using the Flamelet Progress-Variable Approach
    Alessandro Coclite
    Giuseppe Pascazio
    Pietro De Palma
    Luigi Cutrone
    Matthias Ihme
    Flow, Turbulence and Combustion, 2015, 95 : 97 - 119
  • [22] Second law analysis of premixed and non-premixed oxy-fuel combustion cycles utilizing oxygen separation membranes
    Habib, Mohamed A.
    Imteyaz, Binash
    Nemitallah, Medhat A.
    Applied Energy, 2020, 259
  • [23] Second law analysis of premixed and non-premixed oxy-fuel combustion cycles utilizing oxygen separation membranes
    Habib, Mohamed A.
    Imteyaz, Binash
    Nemitallah, Medhat A.
    APPLIED ENERGY, 2020, 259
  • [24] In-situ tracking of mixture fraction gradient trajectories and unsteady flamelet analysis in turbulent non-premixed combustion
    Scholtissek, A.
    Dietzsch, F.
    Gauding, M.
    Hasse, C.
    COMBUSTION AND FLAME, 2017, 175 : 243 - 258
  • [25] A simplified two-mixture-fraction-based flamelet modelling and its validation on a non-premixed staged combustion system
    Yu, Panlong
    Watanabe, Hiroaki
    COMBUSTION THEORY AND MODELLING, 2023, 27 (01) : 37 - 56
  • [26] NUMERICAL ANALYSIS OF TURBULENT NON-PREMIXED COMBUSTION OF SYNGAS AND AIR IN A ROUND-JET POROUS BURNER
    Klayborworn, Santiphong
    Pakdee, Watit
    JOURNAL OF POROUS MEDIA, 2021, 24 (04) : 55 - 71
  • [27] Numerical Simulation of Non-premixed Turbulent Combustion Using the Eddy Dissipation Concept and Comparing with the Steady Laminar Flamelet Model
    Lysenko, Dmitry A.
    Ertesvag, Ivar S.
    Rian, Kjell Erik
    FLOW TURBULENCE AND COMBUSTION, 2014, 93 (04) : 577 - 605
  • [28] Numerical Simulation of Non-premixed Turbulent Combustion Using the Eddy Dissipation Concept and Comparing with the Steady Laminar Flamelet Model
    Dmitry A. Lysenko
    Ivar S. Ertesvåg
    Kjell Erik Rian
    Flow, Turbulence and Combustion, 2014, 93 : 577 - 605
  • [29] Flame Structure of Supercritical CH4/CO2/O2 Non-Premixed Turbulent Oxy-Combustion by Means
    Giacomazzi, E.
    Cecere, D.
    Arcidiacono, N. M.
    Picchia, F. R.
    TURBULENCE HEAT AND MASS TRANSFER 9 (THMT-18), 2018, : 1025 - 1036
  • [30] Numerical investigation on hydrogen/air non-premixed combustion in a three-dimensional micro combustor
    E, Jiaqiang
    Peng, Qingguo
    Liu, Xueling
    Zuo, Wei
    Zhao, Xiaohuan
    Liu, Haili
    ENERGY CONVERSION AND MANAGEMENT, 2016, 124 : 427 - 438