Three-feed combustion systems in which fuel gas, oxygen, and diluent (CO2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CO}_{2}$$\end{document}) are issued into a combustor are key components to realize an oxy-fuel type gas turbine in a zero-emission plant. Yet, simulations of such systems using mixture fraction-based models are difficult, since multiple mixture fractions are required to describe the system. In this study, large-eddy simulations (LES) with different formulations of non-adiabatic quasi-two-dimensional flamelet (Q2DF) models were performed on a three-feed non-premixed swirl burner. The Q2DF models are derived based on the treatments regarding the third stream; the diluent stream is put in the oxidizer side and/or in the fuel side, giving rise to three models called Q2DF1, Q2DF2, and Q2DF3 models. Results show that the three Q2DF models can predict the results of the experiment well; however, the deviations could not be overlooked. The analysis shows that the differences between the three models become apparent as the mixture fraction of the inactive third stream (Z3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Z_3$$\end{document}) evolves very large, otherwise, the three models give almost the same results. It is confirmed that for a pure inactive diluent third stream when Z3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Z_3$$\end{document} is quite large, its scalar dissipation rate (χ3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _3$$\end{document}) plays an important role and the mixing way (premix or non-premix) of the third stream with other streams should be taken into account, however, the influence of χ3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi _3$$\end{document} on the performance of the three models is quite limited in the condition of a smaller Z3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Z_3$$\end{document}, for instance, less than 0.8, and thus the mixing way of the third stream in the three models will not affect the system.