Link invariants via counting surfaces

被引:0
|
作者
Michael Brandenbursky
机构
[1] Max-Planck-Institut für Mathematik,
来源
Geometriae Dedicata | 2014年 / 173卷
关键词
Knots; Links; Finite type invariants; Gauss diagram formulas; 57M25;
D O I
暂无
中图分类号
学科分类号
摘要
A Gauss diagram is a simple, combinatorial way to present a knot. It is known that any Vassiliev invariant may be obtained from a Gauss diagram formula that involves counting (with signs and multiplicities) subdiagrams of certain combinatorial types. These formulas generalize the calculation of a linking number by counting signs of crossings in a link diagram. Until recently, explicit formulas of this type were known only for few invariants of low degrees. In this paper we present simple formulas for an infinite family of invariants in terms of counting surfaces of a certain genus and number of boundary components in a Gauss diagram. We then identify the resulting invariants with certain derivatives of the HOMFLYPT polynomial.
引用
收藏
页码:243 / 270
页数:27
相关论文
共 50 条
  • [11] Invariants of welded virtual knots via crossed module invariants of knotted surfaces
    Kauffman, Louis H.
    Martins, Joao Faria
    COMPOSITIO MATHEMATICA, 2008, 144 (04) : 1046 - 1080
  • [12] Invariants of surfaces in smooth 4-manifolds from link homology
    Morrison, Scott
    Walker, Kevin
    Wedrich, Paul
    arXiv,
  • [13] Constructing abelian surfaces for cryptography via Rosenhain invariants
    Costello, Craig
    Deines-Schartz, Alyson
    Lauter, Kristin
    Yang, Tonghai
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2014, 17 : 157 - 180
  • [14] New invariants for virtual knots via spanning surfaces
    Juhasz, Andras
    Kauffman, Louis H.
    Ogasa, Eiji
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2024, 33 (04)
  • [15] Counting homotopy classes of mappings via Dijkgraaf-Witten invariants
    Chen, Haimiao
    TOPOLOGY AND ITS APPLICATIONS, 2014, 161 : 316 - 320
  • [16] Polynomial invariants via odd parities for virtual link diagrams
    Im, Young Ho
    Kim, Sera
    Park, Kyoung Il
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2017, 26 (04)
  • [17] INSTANTON COUNTING AND DONALDSON INVARIANTS
    Goettsche, Lothar
    Nakajima, Hiraku
    Yoshioka, Kota
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2008, 80 (03) : 343 - 390
  • [18] Constructing and counting phylogenetic invariants
    Evans, SN
    Zhou, XW
    JOURNAL OF COMPUTATIONAL BIOLOGY, 1998, 5 (04) : 713 - 724
  • [19] INVARIANTS OF 3-MANIFOLDS VIA LINK POLYNOMIALS AND QUANTUM GROUPS
    RESHETIKHIN, N
    TURAEV, VG
    INVENTIONES MATHEMATICAE, 1991, 103 (03) : 547 - 597
  • [20] FERMIONS AND LINK INVARIANTS
    KAUFFMAN, L
    SALEUR, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 : 493 - 532